Chromatic equivalence classes of certain cycles with edges

Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, written G∼H, if P(G) = P(H). A graph G is chromatically unique if for any graph H, G∼H implies that G is isomorphic with H. In this paper, we give the necessary and sufficient conditions for a fam...

詳細記述

保存先:
書誌詳細
主要な著者: Omoomi, Behnaz, Peng, Yee-Hock
フォーマット: 論文
言語:English
出版事項: 2001
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/114099/1/114099.pdf
http://psasir.upm.edu.my/id/eprint/114099/
https://linkinghub.elsevier.com/retrieve/pii/S0012365X00003551
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, written G∼H, if P(G) = P(H). A graph G is chromatically unique if for any graph H, G∼H implies that G is isomorphic with H. In this paper, we give the necessary and sufficient conditions for a family of generalized polygon trees to be chromatically unique. © 2001 Elsevier Science B.V. All rights reserved.