Chromatic equivalence classes of certain generalized polygon trees, III

Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, if P(G) = P(H). A set of graphs script S sign is called a chromatic equivalence class if for any graph H that is chromatically equivalent with a graph G in script S sign, then H∈script S sign. Pen...

詳細記述

保存先:
書誌詳細
主要な著者: Omoomi, Behnaz, Peng, Yee-Hock
フォーマット: 論文
言語:English
出版事項: Elsevier 2003
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/114047/1/114047.pdf
http://psasir.upm.edu.my/id/eprint/114047/
https://linkinghub.elsevier.com/retrieve/pii/S0012365X02008749
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, if P(G) = P(H). A set of graphs script S sign is called a chromatic equivalence class if for any graph H that is chromatically equivalent with a graph G in script S sign, then H∈script S sign. Peng et al. (Discrete Math. 172 (1997) 103-114), studied the chromatic equivalence classes of certain generalized polygon trees. In this paper, we continue that study and present a solution to Problem 2 in Koh and Teo (Discrete Math. 172 (1997) 59-78).