Improved stochastic gradient descent algorithm with mean-gradient adaptive stepsize for solving large-scale optimization problems

Stochastic gradient descent (SGD) is one of the most common algorithms used in solving large unconstrained optimization problems. It utilizes the concept of classical gradient descent method with modification on the gradient selection. SGD uses random or batch data sets to compute gradient in solvin...

詳細記述

保存先:
書誌詳細
主要な著者: Zulkifli, Munierah, Abd Rahmin, Nor Aliza, Wah, June Leong
フォーマット: 論文
言語:English
出版事項: Persatuan Sains Matematik Malaysia 2023
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/110372/1/document%20%284%29.pdf
http://psasir.upm.edu.my/id/eprint/110372/
https://myjms.mohe.gov.my/index.php/dismath/article/view/24687
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!