Reinforcement learning based load balancing for fog-cloud computing systems: an optimization approach
Fog-cloud computing is a promising approach to enhance distributed systems’ efficiency and performance. Though, managing resources and balancing workloads in such environments remains challenging due to their inherent complexity and dynamic nature. The need for effective load-balancing techniques in...
保存先:
主要な著者: | Al-Hashimi, Mustafa, Rahiman, Amir Rizaan, Muhammed, Abdullah, Hamid, Nor Asilah Wati |
---|---|
フォーマット: | 論文 |
出版事項: |
Little Lion Scientific
2023
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/110240/ https://www.jatit.org/volumes/hundredone18.php |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Harnessing reinforcement learning in fog-cloud computing: challenges, insights, and future directions
著者:: Al-Hashimi, Mustafa, 等
出版事項: (2024) -
Fog-cloud scheduling simulator for reinforcement learning algorithms
著者:: Al-Hashimi, Mustafa Ahmed Adnan, 等
出版事項: (2023) -
Fog computing: Will it be the future of cloud computing?
著者:: Firdhous, Mohamed, 等
出版事項: (2014) -
Fog offloading and task management in IoT-fog-cloud environment: review of algorithms, networks, and SDN application
著者:: Rezaee, Mohammad Reza, 等
出版事項: (2024) -
Switch migration frequency for load balancing in fog computing using machine learning algorithm
著者:: Mohd. Fauzi, Mohd. Husaini, 等
出版事項: (2023)