Nanofluid flow and heat transfer between a stationary nonpermeable disk and a permeable rotating shrinking disk with radiation and heat generation effects
The flow between bounded surfaces is known as internal flow. The internal flow between disks has many significant applications, such as gas turbine rotors, rotating machinery, food processing technology, and air cleaning machines. In the current study, the nanofluid flow between two disks, nonpermea...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Semarak Ilmu Publishing
2023
|
Online Access: | http://psasir.upm.edu.my/id/eprint/110141/ https://semarakilmu.com.my/journals/index.php/fluid_mechanics_thermal_sciences/article/view/1225 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.110141 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.1101412024-09-04T06:25:14Z http://psasir.upm.edu.my/id/eprint/110141/ Nanofluid flow and heat transfer between a stationary nonpermeable disk and a permeable rotating shrinking disk with radiation and heat generation effects Yahaya, Rusya Iryanti Md Arifin, Norihan Md Ali, Fadzilah Mohamed Isa, Siti Suzilliana Putri The flow between bounded surfaces is known as internal flow. The internal flow between disks has many significant applications, such as gas turbine rotors, rotating machinery, food processing technology, and air cleaning machines. In the current study, the nanofluid flow between two disks, nonpermeable and stationary, and the other permeable, rotating and shrinking, is analysed. The governing partial differential equations and boundary conditions are proposed with the inclusion of radiation and heat generation effects. Then, similarity transformations are utilised in deriving the nonlinear ordinary differential equations and boundary conditions for computation using the bvp4c solver. Multiple solutions are obtained, and only the first solution is stable. The combination Mn-ZnFe2O4/C2H6O2 nanofluid is found to produce the lowest magnitude of skin friction coefficient and the highest heat transfer rate. Semarak Ilmu Publishing 2023 Article PeerReviewed Yahaya, Rusya Iryanti and Md Arifin, Norihan and Md Ali, Fadzilah and Mohamed Isa, Siti Suzilliana Putri (2023) Nanofluid flow and heat transfer between a stationary nonpermeable disk and a permeable rotating shrinking disk with radiation and heat generation effects. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 101 (1). pp. 37-44. ISSN 2289-7879 https://semarakilmu.com.my/journals/index.php/fluid_mechanics_thermal_sciences/article/view/1225 10.37934/arfmts.101.1.3744 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
description |
The flow between bounded surfaces is known as internal flow. The internal flow between disks has many significant applications, such as gas turbine rotors, rotating machinery, food processing technology, and air cleaning machines. In the current study, the nanofluid flow between two disks, nonpermeable and stationary, and the other permeable, rotating and shrinking, is analysed. The governing partial differential equations and boundary conditions are proposed with the inclusion of radiation and heat generation effects. Then, similarity transformations are utilised in deriving the nonlinear ordinary differential equations and boundary conditions for computation using the bvp4c solver. Multiple solutions are obtained, and only the first solution is stable. The combination Mn-ZnFe2O4/C2H6O2 nanofluid is found to produce the lowest magnitude of skin friction coefficient and the highest heat transfer rate. |
format |
Article |
author |
Yahaya, Rusya Iryanti Md Arifin, Norihan Md Ali, Fadzilah Mohamed Isa, Siti Suzilliana Putri |
spellingShingle |
Yahaya, Rusya Iryanti Md Arifin, Norihan Md Ali, Fadzilah Mohamed Isa, Siti Suzilliana Putri Nanofluid flow and heat transfer between a stationary nonpermeable disk and a permeable rotating shrinking disk with radiation and heat generation effects |
author_facet |
Yahaya, Rusya Iryanti Md Arifin, Norihan Md Ali, Fadzilah Mohamed Isa, Siti Suzilliana Putri |
author_sort |
Yahaya, Rusya Iryanti |
title |
Nanofluid flow and heat transfer between a stationary nonpermeable disk and a permeable rotating shrinking disk with radiation and heat generation effects |
title_short |
Nanofluid flow and heat transfer between a stationary nonpermeable disk and a permeable rotating shrinking disk with radiation and heat generation effects |
title_full |
Nanofluid flow and heat transfer between a stationary nonpermeable disk and a permeable rotating shrinking disk with radiation and heat generation effects |
title_fullStr |
Nanofluid flow and heat transfer between a stationary nonpermeable disk and a permeable rotating shrinking disk with radiation and heat generation effects |
title_full_unstemmed |
Nanofluid flow and heat transfer between a stationary nonpermeable disk and a permeable rotating shrinking disk with radiation and heat generation effects |
title_sort |
nanofluid flow and heat transfer between a stationary nonpermeable disk and a permeable rotating shrinking disk with radiation and heat generation effects |
publisher |
Semarak Ilmu Publishing |
publishDate |
2023 |
url |
http://psasir.upm.edu.my/id/eprint/110141/ https://semarakilmu.com.my/journals/index.php/fluid_mechanics_thermal_sciences/article/view/1225 |
_version_ |
1811686051098394624 |
score |
13.211869 |