Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles
Localized surface plasmon resonance (LSPR) can enhance the optical field density around the nanostructure to improve devices’ light absorption. Aluminum nanoparticles (Al NPs) were introduced into solar-blind photodetectors with carbon dots (CDs) as a photosensitive material. It is found that by ins...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Published: |
Society of Photo-optical Instrumentation Engineers
2023
|
Online Access: | http://psasir.upm.edu.my/id/eprint/108990/ https://www.spiedigitallibrary.org/journals/journal-of-nanophotonics/volume-17/issue-02/026013/Localized-surface-plasmon-enhanced-carbon-dots-based-solar-blind-ultraviolet/10.1117/1.JNP.17.026013.full |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.108990 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.1089902024-10-15T05:45:46Z http://psasir.upm.edu.my/id/eprint/108990/ Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles Chen, Xinyue Zhao, Zhiwei Jia, Xi Yu, Yanling Fang, Yong Zhu, Mengru Weng, Zhengjin Lei, Wei Shafe, Suhaidi Mohtar, Mohd Nazim Localized surface plasmon resonance (LSPR) can enhance the optical field density around the nanostructure to improve devices’ light absorption. Aluminum nanoparticles (Al NPs) were introduced into solar-blind photodetectors with carbon dots (CDs) as a photosensitive material. It is found that by inserting Al NPs into the device, the switching ratio, responsivity, and external quantum efficiency reached 125.9, 0.511 A/W, and 2.16, respectively, which has obvious improvement compared with CDs based photodetector. The results indicate that Al NPs have an apparent optimization effect on the performance of the CDs photodetector by stimulating LSPR, which improves the photoresponse ability of CDs. It is illustrated by finite difference time-domain method that Al NPs can constraint the light field energy and successfully stimulate LSPR. Society of Photo-optical Instrumentation Engineers 2023-04-01 Article PeerReviewed Chen, Xinyue and Zhao, Zhiwei and Jia, Xi and Yu, Yanling and Fang, Yong and Zhu, Mengru and Weng, Zhengjin and Lei, Wei and Shafe, Suhaidi and Mohtar, Mohd Nazim (2023) Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles. Journal of Nanophotonics, 17 (2). art. no. 026013. ISSN 1934-2608 https://www.spiedigitallibrary.org/journals/journal-of-nanophotonics/volume-17/issue-02/026013/Localized-surface-plasmon-enhanced-carbon-dots-based-solar-blind-ultraviolet/10.1117/1.JNP.17.026013.full 10.1117/1.jnp.17.026013 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
description |
Localized surface plasmon resonance (LSPR) can enhance the optical field density around the nanostructure to improve devices’ light absorption. Aluminum nanoparticles (Al NPs) were introduced into solar-blind photodetectors with carbon dots (CDs) as a photosensitive material. It is found that by inserting Al NPs into the device, the switching ratio, responsivity, and external quantum efficiency reached 125.9, 0.511 A/W, and 2.16, respectively, which has obvious improvement compared with CDs based photodetector. The results indicate that Al NPs have an apparent optimization effect on the performance of the CDs photodetector by stimulating LSPR, which improves the photoresponse ability of CDs. It is illustrated by finite difference time-domain method that Al NPs can constraint the light field energy and successfully stimulate LSPR. |
format |
Article |
author |
Chen, Xinyue Zhao, Zhiwei Jia, Xi Yu, Yanling Fang, Yong Zhu, Mengru Weng, Zhengjin Lei, Wei Shafe, Suhaidi Mohtar, Mohd Nazim |
spellingShingle |
Chen, Xinyue Zhao, Zhiwei Jia, Xi Yu, Yanling Fang, Yong Zhu, Mengru Weng, Zhengjin Lei, Wei Shafe, Suhaidi Mohtar, Mohd Nazim Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles |
author_facet |
Chen, Xinyue Zhao, Zhiwei Jia, Xi Yu, Yanling Fang, Yong Zhu, Mengru Weng, Zhengjin Lei, Wei Shafe, Suhaidi Mohtar, Mohd Nazim |
author_sort |
Chen, Xinyue |
title |
Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles |
title_short |
Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles |
title_full |
Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles |
title_fullStr |
Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles |
title_full_unstemmed |
Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles |
title_sort |
localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by al nanoparticles |
publisher |
Society of Photo-optical Instrumentation Engineers |
publishDate |
2023 |
url |
http://psasir.upm.edu.my/id/eprint/108990/ https://www.spiedigitallibrary.org/journals/journal-of-nanophotonics/volume-17/issue-02/026013/Localized-surface-plasmon-enhanced-carbon-dots-based-solar-blind-ultraviolet/10.1117/1.JNP.17.026013.full |
_version_ |
1814054677832007680 |
score |
13.211869 |