Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells

Oral cancer has a poor survival rate despite comprehensive therapy. Current treatments result in acute side effects and fail to eliminate an aggressive group of cells overexpressing CD44. Such cells are capable of tumour initiating, self-renewal, invasion and metastasis, resulting in tumour relapse...

Full description

Saved in:
Bibliographic Details
Main Authors: Mesrati, Malak Hassn, Ahmad Tajudin, Asilah, Masarudin, Mas Jaffri, Alamassi, Mohammed Numan, Abuhamad, Asma Y., Syahir, Amir
Format: Article
Published: Elsevier BV 2023
Online Access:http://psasir.upm.edu.my/id/eprint/108218/
https://linkinghub.elsevier.com/retrieve/pii/S2352952023000452
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.108218
record_format eprints
spelling my.upm.eprints.1082182024-09-11T03:33:46Z http://psasir.upm.edu.my/id/eprint/108218/ Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells Mesrati, Malak Hassn Ahmad Tajudin, Asilah Masarudin, Mas Jaffri Alamassi, Mohammed Numan Abuhamad, Asma Y. Syahir, Amir Oral cancer has a poor survival rate despite comprehensive therapy. Current treatments result in acute side effects and fail to eliminate an aggressive group of cells overexpressing CD44. Such cells are capable of tumour initiating, self-renewal, invasion and metastasis, resulting in tumour relapse and resistance. This study aims to synthesise and characterise hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles and assess their effectiveness in delivering Paclitaxel and Temozolomide to human tongue squamous cell carcinoma cell line that expresses high CD44 levels, in terms of cell cytotoxicity and apoptosis. This study also assesses the coordinated administration of Paclitaxel and Temozolomide and whether they exhibit significant synergistic cell inhibition effects with reduced introduced drug concentration if co-delivered simultaneously. Nanoparticles were synthesised with solvent evaporation method and characterised to assess their size, homogeneity, and zeta potential. Cell viability assay and real-time cell analysis were performed to examine the cell inhibitory effect of the drug-loaded nanoparticles. Cell apoptosis and cell cycle alteration were detected, and reactive oxygen species induction, mitochondrial membrane potential, and expressed genes associated with cell inhibition and death were evaluated. The synthesised nanoparticles had a nano-sized diameter of 260.40±11.54 nm, a positive zeta potential of +14.31±1.37 mV and a low polydispersity index value of 0.15±0.03. Paclitaxel, Temozolomide, and their combination have inhibited cell proliferation with half maximal inhibitory concentrations of 4 nM, 1000 μM and 2nM:300 μM, respectively. Compared to free drugs, the single-loaded and co-loaded drugs induced more cytotoxicity. Paclitaxel and Temozolomide showed a considerable synergistic inhibitory effect which was discovered to be more significant when the drugs were loaded in the nanoparticles. Drug-loaded nanoparticles were verified to induce higher cell apoptosis rates, cell proportion arrested at the S-phase of the cell cycle, reactive oxygen species generation, mitochondrial collapse and expression of genes associated with cellular inhibition and death than free drugs. These results demonstrate that the established nanoparticles could be a potential candidate for oral cancer therapy since they could deliver and improve the efficacy of single and dual drugs against oral cancer cells. Elsevier BV 2023 Article PeerReviewed Mesrati, Malak Hassn and Ahmad Tajudin, Asilah and Masarudin, Mas Jaffri and Alamassi, Mohammed Numan and Abuhamad, Asma Y. and Syahir, Amir (2023) Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells. OpenNano, 12. art. no. 100166. pp. 1-16. ISSN 2352-9520 https://linkinghub.elsevier.com/retrieve/pii/S2352952023000452 10.1016/j.onano.2023.100166
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
description Oral cancer has a poor survival rate despite comprehensive therapy. Current treatments result in acute side effects and fail to eliminate an aggressive group of cells overexpressing CD44. Such cells are capable of tumour initiating, self-renewal, invasion and metastasis, resulting in tumour relapse and resistance. This study aims to synthesise and characterise hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles and assess their effectiveness in delivering Paclitaxel and Temozolomide to human tongue squamous cell carcinoma cell line that expresses high CD44 levels, in terms of cell cytotoxicity and apoptosis. This study also assesses the coordinated administration of Paclitaxel and Temozolomide and whether they exhibit significant synergistic cell inhibition effects with reduced introduced drug concentration if co-delivered simultaneously. Nanoparticles were synthesised with solvent evaporation method and characterised to assess their size, homogeneity, and zeta potential. Cell viability assay and real-time cell analysis were performed to examine the cell inhibitory effect of the drug-loaded nanoparticles. Cell apoptosis and cell cycle alteration were detected, and reactive oxygen species induction, mitochondrial membrane potential, and expressed genes associated with cell inhibition and death were evaluated. The synthesised nanoparticles had a nano-sized diameter of 260.40±11.54 nm, a positive zeta potential of +14.31±1.37 mV and a low polydispersity index value of 0.15±0.03. Paclitaxel, Temozolomide, and their combination have inhibited cell proliferation with half maximal inhibitory concentrations of 4 nM, 1000 μM and 2nM:300 μM, respectively. Compared to free drugs, the single-loaded and co-loaded drugs induced more cytotoxicity. Paclitaxel and Temozolomide showed a considerable synergistic inhibitory effect which was discovered to be more significant when the drugs were loaded in the nanoparticles. Drug-loaded nanoparticles were verified to induce higher cell apoptosis rates, cell proportion arrested at the S-phase of the cell cycle, reactive oxygen species generation, mitochondrial collapse and expression of genes associated with cellular inhibition and death than free drugs. These results demonstrate that the established nanoparticles could be a potential candidate for oral cancer therapy since they could deliver and improve the efficacy of single and dual drugs against oral cancer cells.
format Article
author Mesrati, Malak Hassn
Ahmad Tajudin, Asilah
Masarudin, Mas Jaffri
Alamassi, Mohammed Numan
Abuhamad, Asma Y.
Syahir, Amir
spellingShingle Mesrati, Malak Hassn
Ahmad Tajudin, Asilah
Masarudin, Mas Jaffri
Alamassi, Mohammed Numan
Abuhamad, Asma Y.
Syahir, Amir
Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells
author_facet Mesrati, Malak Hassn
Ahmad Tajudin, Asilah
Masarudin, Mas Jaffri
Alamassi, Mohammed Numan
Abuhamad, Asma Y.
Syahir, Amir
author_sort Mesrati, Malak Hassn
title Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells
title_short Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells
title_full Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells
title_fullStr Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells
title_full_unstemmed Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells
title_sort hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for cd44+oral cancer cells
publisher Elsevier BV
publishDate 2023
url http://psasir.upm.edu.my/id/eprint/108218/
https://linkinghub.elsevier.com/retrieve/pii/S2352952023000452
_version_ 1811686009337806848
score 13.211869