DeepPulmoTB: a benchmark dataset for multi-task learning of tuberculosis lesions in lung computerized tomography (CT)
Tuberculosis (TB) remains a significant global health challenge, characterized by high incidence and mortality rates on a global scale. With the rapid advancement of computer-aided diagnosis (CAD) tools in recent years, CAD has assumed an increasingly crucial role in supporting TB diagnosis. Nonethe...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier BV
2024
|
Online Access: | http://psasir.upm.edu.my/id/eprint/106115/1/1-s2.0-S2405844024015214-main.pdf http://psasir.upm.edu.my/id/eprint/106115/ https://www.sciencedirect.com/science/article/pii/S2405844024015214 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.106115 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.1061152024-10-03T04:57:33Z http://psasir.upm.edu.my/id/eprint/106115/ DeepPulmoTB: a benchmark dataset for multi-task learning of tuberculosis lesions in lung computerized tomography (CT) Tan, Zhuoyi Madzin, Hizmawati Norafida, Bahari ChongShuang, Yang Sun, Wei Nie, Tianyu Cai, Fengzhou Tuberculosis (TB) remains a significant global health challenge, characterized by high incidence and mortality rates on a global scale. With the rapid advancement of computer-aided diagnosis (CAD) tools in recent years, CAD has assumed an increasingly crucial role in supporting TB diagnosis. Nonetheless, the development of CAD for TB diagnosis heavily relies on well-annotated computerized tomography (CT) datasets. Currently, the available annotations in TB CT datasets are still limited, which in turn restricts the development of CAD tools for TB diagnosis to some extent. To address this limitation, we introduce DeepPulmoTB, a CT multi-task learning dataset explicitly designed for TB diagnosis. To demonstrate the advantages of DeepPulmoTB, we propose a novel multi-task learning model, DeepPulmoTBNet (DPTBNet), for the joint segmentation and classification of lesion tissues in CT images. The architecture of DPTBNet comprises two subnets: SwinUnetR for the segmentation task, and a lightweight multi-scale network for the classification task. Furthermore, to enhance the model's capacity to capture TB lesion features, we introduce an improved iterative optimization algorithm that refines feature maps by integrating probability maps obtained in previous iterations. Extensive experiments validate the effectiveness of DPTBNet and the practicality of the DeepPulmoTB dataset. Elsevier BV 2024 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/106115/1/1-s2.0-S2405844024015214-main.pdf Tan, Zhuoyi and Madzin, Hizmawati and Norafida, Bahari and ChongShuang, Yang and Sun, Wei and Nie, Tianyu and Cai, Fengzhou (2024) DeepPulmoTB: a benchmark dataset for multi-task learning of tuberculosis lesions in lung computerized tomography (CT). Heliyon, 10 (4). art. no. 25490. pp. 1-18. ISSN 2405-8440 https://www.sciencedirect.com/science/article/pii/S2405844024015214 10.1016/j.heliyon.2024.e25490 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
Tuberculosis (TB) remains a significant global health challenge, characterized by high incidence and mortality rates on a global scale. With the rapid advancement of computer-aided diagnosis (CAD) tools in recent years, CAD has assumed an increasingly crucial role in supporting TB diagnosis. Nonetheless, the development of CAD for TB diagnosis heavily relies on well-annotated computerized tomography (CT) datasets. Currently, the available annotations in TB CT datasets are still limited, which in turn restricts the development of CAD tools for TB diagnosis to some extent. To address this limitation, we introduce DeepPulmoTB, a CT multi-task learning dataset explicitly designed for TB diagnosis. To demonstrate the advantages of DeepPulmoTB, we propose a novel multi-task learning model, DeepPulmoTBNet (DPTBNet), for the joint segmentation and classification of lesion tissues in CT images. The architecture of DPTBNet comprises two subnets: SwinUnetR for the segmentation task, and a lightweight multi-scale network for the classification task. Furthermore, to enhance the model's capacity to capture TB lesion features, we introduce an improved iterative optimization algorithm that refines feature maps by integrating probability maps obtained in previous iterations. Extensive experiments validate the effectiveness of DPTBNet and the practicality of the DeepPulmoTB dataset. |
format |
Article |
author |
Tan, Zhuoyi Madzin, Hizmawati Norafida, Bahari ChongShuang, Yang Sun, Wei Nie, Tianyu Cai, Fengzhou |
spellingShingle |
Tan, Zhuoyi Madzin, Hizmawati Norafida, Bahari ChongShuang, Yang Sun, Wei Nie, Tianyu Cai, Fengzhou DeepPulmoTB: a benchmark dataset for multi-task learning of tuberculosis lesions in lung computerized tomography (CT) |
author_facet |
Tan, Zhuoyi Madzin, Hizmawati Norafida, Bahari ChongShuang, Yang Sun, Wei Nie, Tianyu Cai, Fengzhou |
author_sort |
Tan, Zhuoyi |
title |
DeepPulmoTB: a benchmark dataset for multi-task learning of tuberculosis lesions in lung computerized tomography (CT) |
title_short |
DeepPulmoTB: a benchmark dataset for multi-task learning of tuberculosis lesions in lung computerized tomography (CT) |
title_full |
DeepPulmoTB: a benchmark dataset for multi-task learning of tuberculosis lesions in lung computerized tomography (CT) |
title_fullStr |
DeepPulmoTB: a benchmark dataset for multi-task learning of tuberculosis lesions in lung computerized tomography (CT) |
title_full_unstemmed |
DeepPulmoTB: a benchmark dataset for multi-task learning of tuberculosis lesions in lung computerized tomography (CT) |
title_sort |
deeppulmotb: a benchmark dataset for multi-task learning of tuberculosis lesions in lung computerized tomography (ct) |
publisher |
Elsevier BV |
publishDate |
2024 |
url |
http://psasir.upm.edu.my/id/eprint/106115/1/1-s2.0-S2405844024015214-main.pdf http://psasir.upm.edu.my/id/eprint/106115/ https://www.sciencedirect.com/science/article/pii/S2405844024015214 |
_version_ |
1814054597395742720 |
score |
13.223943 |