Spatial estimates of flood damage and risk are influenced by the underpinning DEM resolution: a case study in Kuala Lumpur, Malaysia

The sensitivity of simulated flood depth and area to DEM resolution are acknowledged, but their effects on flood damage and risk estimates are less well understood. This study sought to analyse the relative benefits of using global DEMs of different resolution sizes, 5 m AW3D Standard, 12.5 m ALOS P...

Full description

Saved in:
Bibliographic Details
Main Authors: Fatdillah, Eva, Rehan, Balqis M., Rameshwaran, Ponnambalam, Bell, Victoria A., Zulkafli, Zed, Yusuf, Badronnisa, Sayers, Paul
Format: Article
Published: Multidisciplinary Digital Publishing Institute 2022
Online Access:http://psasir.upm.edu.my/id/eprint/103262/
https://www.mdpi.com/2073-4441/14/14/2208
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sensitivity of simulated flood depth and area to DEM resolution are acknowledged, but their effects on flood damage and risk estimates are less well understood. This study sought to analyse the relative benefits of using global DEMs of different resolution sizes, 5 m AW3D Standard, 12.5 m ALOS PALSAR and 30 m SRTM, to simulate flood inundation, damage and risk. The HEC-RAS 2D model was adopted for flood simulations, and the Toba River in the Klang River Basin in Malaysia was chosen for the case study. Simulated inundation areas from AW3D coincide the most with reported flooded areas, but the coarser-resolution DEMs did capture some of the reported flooded areas. The inundation area increased as the resolution got finer. As a result, AW3D returned almost double flood damage and risk estimates compared to ALOS PALSAR, and almost quadruple compared to SRTM for building-level damage and risk analysis. The findings indicate that a finer-resolution DEM improves inundation modelling and could provide greater flood damage and risk estimates compared to a coarser DEM. However, DEMs of coarser resolution remain useful in data-scarce regions or for large-scale assessments in efforts to manage flood risk.