Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature

Due to their improved thermal conductivity, nanofluids have the potential to be used as heat transfer fluids in thermal systems. However adding particles into nanofluids will increase the viscosity of the fluid flow. This demonstrates that there is a trade-off between heat transfer enhancement and v...

Full description

Saved in:
Bibliographic Details
Main Authors: Leong, K.Y., Saidur, R., Mahlia, T.M.I., Yau, Y.H.
Format:
Published: 2017
Online Access:http://dspace.uniten.edu.my/jspui/handle/123456789/6169
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-6169
record_format dspace
spelling my.uniten.dspace-61692017-12-08T09:11:51Z Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature Leong, K.Y. Saidur, R. Mahlia, T.M.I. Yau, Y.H. Due to their improved thermal conductivity, nanofluids have the potential to be used as heat transfer fluids in thermal systems. However adding particles into nanofluids will increase the viscosity of the fluid flow. This demonstrates that there is a trade-off between heat transfer enhancement and viscosity. It might not be ideal to achieve a heat transfer enhancement along with a relatively high pumping power. This study presents an analytical investigation on the entropy generation of a nanofluid flow through a circular tube with a constant wall temperature. Nanofluid thermo-physical properties are obtained from literature or calculated from suitable correlations. The present study focuses on water based alumina and titanium dioxide nanofluids. Outcome of the analysis shows that titanium dioxide nanofluids offer lower total dimensionless entropy generation compared to that of alumina nanofluids. Addition of 4% titanium dioxide nanoparticles reduces the total dimensionless entropy generation by 9.7% as compared to only 6.4% reduction observed when using alumina. It is also noted that dimension configurations of the circular tube play a significant role in determining the entropy generation. © 2012 Elsevier Ltd. 2017-12-08T09:11:51Z 2017-12-08T09:11:51Z 2012 http://dspace.uniten.edu.my/jspui/handle/123456789/6169
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Due to their improved thermal conductivity, nanofluids have the potential to be used as heat transfer fluids in thermal systems. However adding particles into nanofluids will increase the viscosity of the fluid flow. This demonstrates that there is a trade-off between heat transfer enhancement and viscosity. It might not be ideal to achieve a heat transfer enhancement along with a relatively high pumping power. This study presents an analytical investigation on the entropy generation of a nanofluid flow through a circular tube with a constant wall temperature. Nanofluid thermo-physical properties are obtained from literature or calculated from suitable correlations. The present study focuses on water based alumina and titanium dioxide nanofluids. Outcome of the analysis shows that titanium dioxide nanofluids offer lower total dimensionless entropy generation compared to that of alumina nanofluids. Addition of 4% titanium dioxide nanoparticles reduces the total dimensionless entropy generation by 9.7% as compared to only 6.4% reduction observed when using alumina. It is also noted that dimension configurations of the circular tube play a significant role in determining the entropy generation. © 2012 Elsevier Ltd.
format
author Leong, K.Y.
Saidur, R.
Mahlia, T.M.I.
Yau, Y.H.
spellingShingle Leong, K.Y.
Saidur, R.
Mahlia, T.M.I.
Yau, Y.H.
Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature
author_facet Leong, K.Y.
Saidur, R.
Mahlia, T.M.I.
Yau, Y.H.
author_sort Leong, K.Y.
title Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature
title_short Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature
title_full Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature
title_fullStr Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature
title_full_unstemmed Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature
title_sort entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature
publishDate 2017
url http://dspace.uniten.edu.my/jspui/handle/123456789/6169
_version_ 1644493861977849856
score 13.223943