Lightning prediction using radiosonde data
This paper presents a concept of predicting lightning with the data from radiosonde using only a simple back propagation neural network model written in C code. The location of interest in this research is Kuala Lumpur International Airport (KLIA). In this model, the parameters related to wind were...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Paper |
Language: | English |
Published: |
2017
|
Online Access: | http://dspace.uniten.edu.my/jspui/handle/123456789/6302 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-5039 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-50392018-12-07T08:10:51Z Lightning prediction using radiosonde data Weng, L.Y. Omar, J.B. Siah, Y.K. Abidin, I.B.Z. Ahmad, S.K. This paper presents a concept of predicting lightning with the data from radiosonde using only a simple back propagation neural network model written in C code. The location of interest in this research is Kuala Lumpur International Airport (KLIA). In this model, the parameters related to wind were disregarded. Preliminary results indicate that this method shows some positive results. Future work should include wind parameters to fully capture all properties for lightning formation, subsequently its prediction. 2017-11-14T03:21:34Z 2017-11-14T03:21:34Z 2008 Conference Paper http://dspace.uniten.edu.my/jspui/handle/123456789/6302 10.1109/ICICCI.2010.83 en Proceedings - 2010 International Conference on Intelligent Computing and Cognitive Informatics, ICICCI 2010 2010, Article number 5566013, Pages 152-155 |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
language |
English |
description |
This paper presents a concept of predicting lightning with the data from radiosonde using only a simple back propagation neural network model written in C code. The location of interest in this research is Kuala Lumpur International Airport (KLIA). In this model, the parameters related to wind were disregarded. Preliminary results indicate that this method shows some positive results. Future work should include wind parameters to fully capture all properties for lightning formation, subsequently its prediction. |
format |
Conference Paper |
author |
Weng, L.Y. Omar, J.B. Siah, Y.K. Abidin, I.B.Z. Ahmad, S.K. |
spellingShingle |
Weng, L.Y. Omar, J.B. Siah, Y.K. Abidin, I.B.Z. Ahmad, S.K. Lightning prediction using radiosonde data |
author_facet |
Weng, L.Y. Omar, J.B. Siah, Y.K. Abidin, I.B.Z. Ahmad, S.K. |
author_sort |
Weng, L.Y. |
title |
Lightning prediction using radiosonde data |
title_short |
Lightning prediction using radiosonde data |
title_full |
Lightning prediction using radiosonde data |
title_fullStr |
Lightning prediction using radiosonde data |
title_full_unstemmed |
Lightning prediction using radiosonde data |
title_sort |
lightning prediction using radiosonde data |
publishDate |
2017 |
url |
http://dspace.uniten.edu.my/jspui/handle/123456789/6302 |
_version_ |
1644493597566828544 |
score |
13.223943 |