Lightning forecasting using ANN-BP & radiosonde
This paper presents a concept of predicting lightning with the data from radiosonde and a more reliable dataset of lightning occurances from Tenaga Nasionl Berhad Research Sdn Berhad (TNBR). The location of interest in this research is Kuala Lumpur International Airport (KLIA). The engine used for p...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Paper |
Language: | English |
Published: |
2017
|
Online Access: | http://dspace.uniten.edu.my/jspui/handle/123456789/6300 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-5024 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-50242018-12-13T01:04:43Z Lightning forecasting using ANN-BP & radiosonde Weng, L.Y. Omar, J.B. Siah, Y.K. Ahmed, S.K. Abidin, I.B.Z. Abdullah, N. This paper presents a concept of predicting lightning with the data from radiosonde and a more reliable dataset of lightning occurances from Tenaga Nasionl Berhad Research Sdn Berhad (TNBR). The location of interest in this research is Kuala Lumpur International Airport (KLIA). The engine used for prediction is of a Neural Network Back Propogation type (ANN-BP). The initial results show that the combination of datasets and engine are workable, however the prediction results seem to be more biased towards lightning days as compared to non-lightning days. © 2010 IEEE. 2017-11-14T03:21:27Z 2017-11-14T03:21:27Z 2010 Conference Paper http://dspace.uniten.edu.my/jspui/handle/123456789/6300 10.1109/ICICCI.2010.83 en Proceedings - 2010 International Conference on Intelligent Computing and Cognitive Informatics, ICICCI 2010 2010, Article number 5566013, Pages 152-155 |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
language |
English |
description |
This paper presents a concept of predicting lightning with the data from radiosonde and a more reliable dataset of lightning occurances from Tenaga Nasionl Berhad Research Sdn Berhad (TNBR). The location of interest in this research is Kuala Lumpur International Airport (KLIA). The engine used for prediction is of a Neural Network Back Propogation type (ANN-BP). The initial results show that the combination of datasets and engine are workable, however the prediction results seem to be more biased towards lightning days as compared to non-lightning days. © 2010 IEEE. |
format |
Conference Paper |
author |
Weng, L.Y. Omar, J.B. Siah, Y.K. Ahmed, S.K. Abidin, I.B.Z. Abdullah, N. |
spellingShingle |
Weng, L.Y. Omar, J.B. Siah, Y.K. Ahmed, S.K. Abidin, I.B.Z. Abdullah, N. Lightning forecasting using ANN-BP & radiosonde |
author_facet |
Weng, L.Y. Omar, J.B. Siah, Y.K. Ahmed, S.K. Abidin, I.B.Z. Abdullah, N. |
author_sort |
Weng, L.Y. |
title |
Lightning forecasting using ANN-BP & radiosonde |
title_short |
Lightning forecasting using ANN-BP & radiosonde |
title_full |
Lightning forecasting using ANN-BP & radiosonde |
title_fullStr |
Lightning forecasting using ANN-BP & radiosonde |
title_full_unstemmed |
Lightning forecasting using ANN-BP & radiosonde |
title_sort |
lightning forecasting using ann-bp & radiosonde |
publishDate |
2017 |
url |
http://dspace.uniten.edu.my/jspui/handle/123456789/6300 |
_version_ |
1644493593176440832 |
score |
13.222552 |