Optimal Fuzzy logic controller based Genetic Algorithm for control maximum power point tracking for Boost Converter

This paper presents a study on Maximum Power Point Tracking (MPPT) employing a DC-DC boost converter in MATLAB. The approach utilizes a genetic algorithm to determine optimal values for the membership functions (MFs) and the configuration of rules in a Mamdani fuzzy inference system. The fuzzy syste...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdolrasol M.G.M., Tiong S.K., Ker P.J., Ansari S., Hannan M.A., Ustun T.S.
Other Authors: 35796848700
Format: Conference paper
Published: Institute of Electrical and Electronics Engineers Inc. 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-36954
record_format dspace
spelling my.uniten.dspace-369542025-03-03T15:46:05Z Optimal Fuzzy logic controller based Genetic Algorithm for control maximum power point tracking for Boost Converter Abdolrasol M.G.M. Tiong S.K. Ker P.J. Ansari S. Hannan M.A. Ustun T.S. 35796848700 15128307800 37461740800 57218906707 7103014445 43761679200 Adaptive boosting Boost converter Fuzzy control Fuzzy inference Fuzzy rules MOSFET devices Root loci Surface discharges BOOST converter Dc - dc boost converters DC-DC boost genetic algorithm Fuzzy controllers Fuzzy inference systems Mamdani fuzzy inferences Maximum Power Point Tracking Memberships function Optimal fuzzy logic controllers Optimal values MOS devices This paper presents a study on Maximum Power Point Tracking (MPPT) employing a DC-DC boost converter in MATLAB. The approach utilizes a genetic algorithm to determine optimal values for the membership functions (MFs) and the configuration of rules in a Mamdani fuzzy inference system. The fuzzy system is designed to manage the error signal derived from comparing the reference voltage of the Perturb and Observe (P&O) controller with the photovoltaic (PV) voltage. Inputs to the fuzzy controller include the error and its rate of change, with the output controlling the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) pulses. The optimization aims to minimize the Root Mean Square Error (RMSE) to identify the most effective MFs and rules for the fuzzy controller, ultimately enhancing the MPPT output of the boost converter. ? 2024 IEEE. Final 2025-03-03T07:46:05Z 2025-03-03T07:46:05Z 2024 Conference paper 10.1109/ICCIGST60741.2024.10717559 2-s2.0-85208431862 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208431862&doi=10.1109%2fICCIGST60741.2024.10717559&partnerID=40&md5=507a1fada3e2168338695712dbb8b135 https://irepository.uniten.edu.my/handle/123456789/36954 Institute of Electrical and Electronics Engineers Inc. Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
topic Adaptive boosting
Boost converter
Fuzzy control
Fuzzy inference
Fuzzy rules
MOSFET devices
Root loci
Surface discharges
BOOST converter
Dc - dc boost converters
DC-DC boost genetic algorithm
Fuzzy controllers
Fuzzy inference systems
Mamdani fuzzy inferences
Maximum Power Point Tracking
Memberships function
Optimal fuzzy logic controllers
Optimal values
MOS devices
spellingShingle Adaptive boosting
Boost converter
Fuzzy control
Fuzzy inference
Fuzzy rules
MOSFET devices
Root loci
Surface discharges
BOOST converter
Dc - dc boost converters
DC-DC boost genetic algorithm
Fuzzy controllers
Fuzzy inference systems
Mamdani fuzzy inferences
Maximum Power Point Tracking
Memberships function
Optimal fuzzy logic controllers
Optimal values
MOS devices
Abdolrasol M.G.M.
Tiong S.K.
Ker P.J.
Ansari S.
Hannan M.A.
Ustun T.S.
Optimal Fuzzy logic controller based Genetic Algorithm for control maximum power point tracking for Boost Converter
description This paper presents a study on Maximum Power Point Tracking (MPPT) employing a DC-DC boost converter in MATLAB. The approach utilizes a genetic algorithm to determine optimal values for the membership functions (MFs) and the configuration of rules in a Mamdani fuzzy inference system. The fuzzy system is designed to manage the error signal derived from comparing the reference voltage of the Perturb and Observe (P&O) controller with the photovoltaic (PV) voltage. Inputs to the fuzzy controller include the error and its rate of change, with the output controlling the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) pulses. The optimization aims to minimize the Root Mean Square Error (RMSE) to identify the most effective MFs and rules for the fuzzy controller, ultimately enhancing the MPPT output of the boost converter. ? 2024 IEEE.
author2 35796848700
author_facet 35796848700
Abdolrasol M.G.M.
Tiong S.K.
Ker P.J.
Ansari S.
Hannan M.A.
Ustun T.S.
format Conference paper
author Abdolrasol M.G.M.
Tiong S.K.
Ker P.J.
Ansari S.
Hannan M.A.
Ustun T.S.
author_sort Abdolrasol M.G.M.
title Optimal Fuzzy logic controller based Genetic Algorithm for control maximum power point tracking for Boost Converter
title_short Optimal Fuzzy logic controller based Genetic Algorithm for control maximum power point tracking for Boost Converter
title_full Optimal Fuzzy logic controller based Genetic Algorithm for control maximum power point tracking for Boost Converter
title_fullStr Optimal Fuzzy logic controller based Genetic Algorithm for control maximum power point tracking for Boost Converter
title_full_unstemmed Optimal Fuzzy logic controller based Genetic Algorithm for control maximum power point tracking for Boost Converter
title_sort optimal fuzzy logic controller based genetic algorithm for control maximum power point tracking for boost converter
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2025
_version_ 1825816199549681664
score 13.244109