Meta-heuristics and deep learning for energy applications: Review and open research challenges (2018?2023)
The synergy between deep learning and meta-heuristic algorithms presents a promising avenue for tackling the complexities of energy-related modeling and forecasting tasks. While deep learning excels in capturing intricate patterns in data, it may falter in achieving optimality due to the nonlinear n...
Saved in:
Main Authors: | Hosseini E., Al-Ghaili A.M., Kadir D.H., Gunasekaran S.S., Ahmed A.N., Jamil N., Deveci M., Razali R.A. |
---|---|
其他作者: | 57212521533 |
格式: | Review |
出版: |
Elsevier Ltd
2025
|
主题: | |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
The Evolutionary Convergent Algorithm: A Guiding Path of Neural Network Advancement
由: Hosseini E., et al.
出版: (2025) -
Solving single and bi-objective surgery scheduling problems using local search heuristic
由: Ab Rashid, Nur Shafiqah
出版: (2021) -
Investigation of Meta-heuristics Algorithms in ANN Streamflow Forecasting
由: Wei Y., et al.
出版: (2024) -
A New Unsupervised Validation Index Model Suitable for Energy-Efficient Clustering Techniques in VANET
由: Abdulrazzak H.N., et al.
出版: (2024) -
Locust- inspired meta-heuristic algorithm for optimising cloud computing performance
由: Fadhil, Mohammed Alaa
出版: (2023)