Meta-heuristics and deep learning for energy applications: Review and open research challenges (2018?2023)
The synergy between deep learning and meta-heuristic algorithms presents a promising avenue for tackling the complexities of energy-related modeling and forecasting tasks. While deep learning excels in capturing intricate patterns in data, it may falter in achieving optimality due to the nonlinear n...
保存先:
主要な著者: | Hosseini E., Al-Ghaili A.M., Kadir D.H., Gunasekaran S.S., Ahmed A.N., Jamil N., Deveci M., Razali R.A. |
---|---|
その他の著者: | 57212521533 |
フォーマット: | Review |
出版事項: |
Elsevier Ltd
2025
|
主題: | |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
The Evolutionary Convergent Algorithm: A Guiding Path of Neural Network Advancement
著者:: Hosseini E., 等
出版事項: (2025) -
Solving single and bi-objective surgery scheduling problems using local search heuristic
著者:: Ab Rashid, Nur Shafiqah
出版事項: (2021) -
Investigation of Meta-heuristics Algorithms in ANN Streamflow Forecasting
著者:: Wei Y., 等
出版事項: (2024) -
A New Unsupervised Validation Index Model Suitable for Energy-Efficient Clustering Techniques in VANET
著者:: Abdulrazzak H.N., 等
出版事項: (2024) -
Locust- inspired meta-heuristic algorithm for optimising cloud computing performance
著者:: Fadhil, Mohammed Alaa
出版事項: (2023)