Metaheuristic Optimization of Perovskite Solar Cell Using Hybrid L32 Taguchi Doe-Based Genetic Algorithm
Solar cells convert sunlight into electricity, and the efficiency of this conversion process largely depends on the material parameters. Optimizing these parameters, like thickness and carrier concentration, could significantly increase the efficiency of solar cells. This paper emphasizes the metahe...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Penerbit Akademia Baru
2025
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-36258 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-362582025-03-03T15:41:43Z Metaheuristic Optimization of Perovskite Solar Cell Using Hybrid L32 Taguchi Doe-Based Genetic Algorithm Kaharudin K.E. Jalaludin N.A. Salehuddin F. Arith F. Mohd Zain A.S. Ahmad I. Mat Junos S.A. Apte P.R. 56472706900 58861184200 36239165300 55799799900 55925762500 12792216600 59474843400 55725529100 Solar cells convert sunlight into electricity, and the efficiency of this conversion process largely depends on the material parameters. Optimizing these parameters, like thickness and carrier concentration, could significantly increase the efficiency of solar cells. This paper emphasizes the metaheuristic optimization approach in searching for the optimum input parameters of perovskite solar cell (PSC). The proposed approach is realized using Solar Cell Capacitance Simulator (SCAPS-1D) software incorporated with a hybrid L32 Taguchi DoE-based Genetic Algorithm. Based on Multiple Linear Regression (MLR) analysis, the thickness of mix halide perovskite (CH3NH3PbI3-XClX) was discovered to be the most crucial input parameter affecting the Power Conversion Efficiency (PCE) variations. Based on the result of the Genetic algorithm, the optimal values of the input parameters: Fluorine doped tin oxide (FTO) thickness, FTO donor density, Titanium Dioxide (TiO2) layer thickness, TiO2 donor density, CH3NH3PbI3-XClX layer thickness, CH3NH3PbI3-XClX donor density, graphene oxide (GO) layer thickness, and GO acceptor density are predicted to be 0.187 ?m, 9.965x1021 cm-3, 0.033 ?m, 9.629x1021 cm-3, 0.926 ?m, 9.983x1021 cm-3, 0.039 ?m and 9.671x1021 cm-3 respectively. Using the predicted optimum input parameters, the simulation generates the best value of open voltage (Voc), current density (Jsc), fill factor (FF), and PCE measured at 1.647 V, 25.68 mA/cm2, 92.03%, and 38.93%, respectively. ? 2024, Penerbit Akademia Baru. All rights reserved. Final 2025-03-03T07:41:43Z 2025-03-03T07:41:43Z 2024 Article 10.37934/ard.122.1.219233 2-s2.0-85212175269 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85212175269&doi=10.37934%2fard.122.1.219233&partnerID=40&md5=df85bc71c8148aa141e1dfde382d8708 https://irepository.uniten.edu.my/handle/123456789/36258 122 1 219 233 Penerbit Akademia Baru Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
Solar cells convert sunlight into electricity, and the efficiency of this conversion process largely depends on the material parameters. Optimizing these parameters, like thickness and carrier concentration, could significantly increase the efficiency of solar cells. This paper emphasizes the metaheuristic optimization approach in searching for the optimum input parameters of perovskite solar cell (PSC). The proposed approach is realized using Solar Cell Capacitance Simulator (SCAPS-1D) software incorporated with a hybrid L32 Taguchi DoE-based Genetic Algorithm. Based on Multiple Linear Regression (MLR) analysis, the thickness of mix halide perovskite (CH3NH3PbI3-XClX) was discovered to be the most crucial input parameter affecting the Power Conversion Efficiency (PCE) variations. Based on the result of the Genetic algorithm, the optimal values of the input parameters: Fluorine doped tin oxide (FTO) thickness, FTO donor density, Titanium Dioxide (TiO2) layer thickness, TiO2 donor density, CH3NH3PbI3-XClX layer thickness, CH3NH3PbI3-XClX donor density, graphene oxide (GO) layer thickness, and GO acceptor density are predicted to be 0.187 ?m, 9.965x1021 cm-3, 0.033 ?m, 9.629x1021 cm-3, 0.926 ?m, 9.983x1021 cm-3, 0.039 ?m and 9.671x1021 cm-3 respectively. Using the predicted optimum input parameters, the simulation generates the best value of open voltage (Voc), current density (Jsc), fill factor (FF), and PCE measured at 1.647 V, 25.68 mA/cm2, 92.03%, and 38.93%, respectively. ? 2024, Penerbit Akademia Baru. All rights reserved. |
author2 |
56472706900 |
author_facet |
56472706900 Kaharudin K.E. Jalaludin N.A. Salehuddin F. Arith F. Mohd Zain A.S. Ahmad I. Mat Junos S.A. Apte P.R. |
format |
Article |
author |
Kaharudin K.E. Jalaludin N.A. Salehuddin F. Arith F. Mohd Zain A.S. Ahmad I. Mat Junos S.A. Apte P.R. |
spellingShingle |
Kaharudin K.E. Jalaludin N.A. Salehuddin F. Arith F. Mohd Zain A.S. Ahmad I. Mat Junos S.A. Apte P.R. Metaheuristic Optimization of Perovskite Solar Cell Using Hybrid L32 Taguchi Doe-Based Genetic Algorithm |
author_sort |
Kaharudin K.E. |
title |
Metaheuristic Optimization of Perovskite Solar Cell Using Hybrid L32 Taguchi Doe-Based Genetic Algorithm |
title_short |
Metaheuristic Optimization of Perovskite Solar Cell Using Hybrid L32 Taguchi Doe-Based Genetic Algorithm |
title_full |
Metaheuristic Optimization of Perovskite Solar Cell Using Hybrid L32 Taguchi Doe-Based Genetic Algorithm |
title_fullStr |
Metaheuristic Optimization of Perovskite Solar Cell Using Hybrid L32 Taguchi Doe-Based Genetic Algorithm |
title_full_unstemmed |
Metaheuristic Optimization of Perovskite Solar Cell Using Hybrid L32 Taguchi Doe-Based Genetic Algorithm |
title_sort |
metaheuristic optimization of perovskite solar cell using hybrid l32 taguchi doe-based genetic algorithm |
publisher |
Penerbit Akademia Baru |
publishDate |
2025 |
_version_ |
1825816171052531712 |
score |
13.244109 |