Combination of data-driven models and best subset regression for predicting the standardized precipitation index (SPI) at the Upper Godavari Basin in India
Standardized precipitation index prediction and monitoring are essential to mitigating the effect of drought actions on precision farming, environments, climate-smart agriculture, and the water cycle. In this study, four data-driven models, additive regression, random subspace, M5Pruned (M5P), and b...
Saved in:
Main Authors: | Pande C.B., Costache R., Sammen S.S., Noor R., Elbeltagi A. |
---|---|
其他作者: | 57193547008 |
格式: | Article |
出版: |
Springer
2024
|
主题: | |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Extreme heat vulnerability assessment in Peninsular Malaysia with integration of remote sensing and sociodemographic data
由: Ahmad Kamal, Nurfatin Izzati
出版: (2021) -
Comparative Assessment of Improved SVM Method under Different Kernel Functions for Predicting Multi-scale Drought Index
由: Pande C.B., et al.
出版: (2024) -
Prediction of meteorological drought and standardized precipitation index based on the random forest (RF), random tree (RT), and Gaussian process regression (GPR) models
由: Elbeltagi A., et al.
出版: (2024) -
Forecasting of meteorological drought using ensemble and machine learning models
由: Pande C.B., et al.
出版: (2025) -
Evaluating the groundwater recharge requirement and restoration in the Kanari river, India, using SWAT model
由: Trivedi A., et al.
出版: (2025)