Combination of data-driven models and best subset regression for predicting the standardized precipitation index (SPI) at the Upper Godavari Basin in India
Standardized precipitation index prediction and monitoring are essential to mitigating the effect of drought actions on precision farming, environments, climate-smart agriculture, and the water cycle. In this study, four data-driven models, additive regression, random subspace, M5Pruned (M5P), and b...
محفوظ في:
المؤلفون الرئيسيون: | Pande C.B., Costache R., Sammen S.S., Noor R., Elbeltagi A. |
---|---|
مؤلفون آخرون: | 57193547008 |
التنسيق: | مقال |
منشور في: |
Springer
2024
|
الموضوعات: | |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Extreme heat vulnerability assessment in Peninsular Malaysia with integration of remote sensing and sociodemographic data
بواسطة: Ahmad Kamal, Nurfatin Izzati
منشور في: (2021) -
Comparative Assessment of Improved SVM Method under Different Kernel Functions for Predicting Multi-scale Drought Index
بواسطة: Pande C.B., وآخرون
منشور في: (2024) -
Prediction of meteorological drought and standardized precipitation index based on the random forest (RF), random tree (RT), and Gaussian process regression (GPR) models
بواسطة: Elbeltagi A., وآخرون
منشور في: (2024) -
Forecasting of meteorological drought using ensemble and machine learning models
بواسطة: Pande C.B., وآخرون
منشور في: (2025) -
Evaluating the groundwater recharge requirement and restoration in the Kanari river, India, using SWAT model
بواسطة: Trivedi A., وآخرون
منشور في: (2025)