Rainfall-runoff modelling based on global climate model and tropical rainfall measuring mission (GCM -TRMM): A case study in Hulu Terengganu catchment, Malaysia
The hydropower Plant in Terengganu is one of the major hydroelectric dams currently operated in Malaysia. For better operating and scheduling, accurate modelling of natural inflow is vital for a hydroelectric dam. The rainfall-runoff model is among the most reliable models in predicting the inflow b...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Elsevier Ltd
2024
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The hydropower Plant in Terengganu is one of the major hydroelectric dams currently operated in Malaysia. For better operating and scheduling, accurate modelling of natural inflow is vital for a hydroelectric dam. The rainfall-runoff model is among the most reliable models in predicting the inflow based on the rainfall events. Such a model's reliability depends entirely on the reliability and consistency of the rainfall events assessed. However, due to the hydropower plant's remote location, the cost associated with maintaining the installed rainfall stations became a burden. Therefore, the study aims to create a continuous set of rainfall data before, during, and after the construction of a hydropower plant and simulate a rainfall-runoff model for the area. It also examines the reliability of alternative methods by combining rainfall data from two sources: the general circulation model and tropical rainfall measuring mission. Rainfall data from ground stations and generated data using inverse distance weighted method will be compared. The statistical downscaling model will obtain regional rainfall from the general circulation model. The data will be divided into three stages to evaluate the accuracy of the models in capturing inflow changes. The results revealed that rainfall data from TRMM is more correlated to ground station data with R2 = 0.606, while SDSM data has R2 = 0.592. The proposed inflow model based on GCM-TRMM data showed higher precision compared to the model using ground station data. The proposed model consistently predicted inflow during three stages with R2 values ranging from 0.75 to 0.93. � 2023 The Authors |
---|