Selecting of cutting parameters from prediction model of cutting force for turning nickel based hastelloy C-276 using response surface methodology
Industries around the world continually strive for lower cost solutions with reduced lead time in order to maintain their competitiveness. Traditionally, most Nickel based super alloy parts are hard machining. Machinability consideration of nickel based Hastelloy C-276 in turning operations has been...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
EuroJournals, Inc.
2023
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-30914 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-309142023-12-29T15:55:47Z Selecting of cutting parameters from prediction model of cutting force for turning nickel based hastelloy C-276 using response surface methodology Khidhir B.A. Mohamed B. 35801121900 35801233900 Cutting speed First order (linear + interaction) High speed camera Surface response methodology Industries around the world continually strive for lower cost solutions with reduced lead time in order to maintain their competitiveness. Traditionally, most Nickel based super alloy parts are hard machining. Machinability consideration of nickel based Hastelloy C-276 in turning operations has been carried out using ceramic inserts under dry conditions. Hastelloy C-276 is a difficult-to-machine material because of its low thermal diffusive property and high strength at high temperature. This paper describes the selecting of a cutting speed and feed rate from the charts that depends on cutting force model for turning Hastelloy C-276 utilizing response surface methodology. The model found to be accurate based on the variance analysis and the predicted value is closer with the experimental result. On - line monitoring used through High speed camera. This technique shows its benefits when analyzing the cutting path. From the detailed pictures one can easily observe that the selecting of the machining parameters not the only factors that depends on the cutting force but also another factors such as the chatter occurred during cutting that caused by round inserts or by burr formation occur during cutting and increase sincerely when approach angles increasingly from 45� to 95� consequently and its effected by increasing the feed rate as a result. The pictures gave good evidence that the observation during cutting must included in the chart to select the accurate magnitude for cutting parameters such as cutting speed, feed rate and depth of cut. � EuroJournals Publishing, Inc. 2009. Final 2023-12-29T07:55:47Z 2023-12-29T07:55:47Z 2009 Article 2-s2.0-68349135005 https://www.scopus.com/inward/record.uri?eid=2-s2.0-68349135005&partnerID=40&md5=9a99932ce38926e3691eb3ab7dec5ff4 https://irepository.uniten.edu.my/handle/123456789/30914 33 3 525 535 EuroJournals, Inc. Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
topic |
Cutting speed First order (linear + interaction) High speed camera Surface response methodology |
spellingShingle |
Cutting speed First order (linear + interaction) High speed camera Surface response methodology Khidhir B.A. Mohamed B. Selecting of cutting parameters from prediction model of cutting force for turning nickel based hastelloy C-276 using response surface methodology |
description |
Industries around the world continually strive for lower cost solutions with reduced lead time in order to maintain their competitiveness. Traditionally, most Nickel based super alloy parts are hard machining. Machinability consideration of nickel based Hastelloy C-276 in turning operations has been carried out using ceramic inserts under dry conditions. Hastelloy C-276 is a difficult-to-machine material because of its low thermal diffusive property and high strength at high temperature. This paper describes the selecting of a cutting speed and feed rate from the charts that depends on cutting force model for turning Hastelloy C-276 utilizing response surface methodology. The model found to be accurate based on the variance analysis and the predicted value is closer with the experimental result. On - line monitoring used through High speed camera. This technique shows its benefits when analyzing the cutting path. From the detailed pictures one can easily observe that the selecting of the machining parameters not the only factors that depends on the cutting force but also another factors such as the chatter occurred during cutting that caused by round inserts or by burr formation occur during cutting and increase sincerely when approach angles increasingly from 45� to 95� consequently and its effected by increasing the feed rate as a result. The pictures gave good evidence that the observation during cutting must included in the chart to select the accurate magnitude for cutting parameters such as cutting speed, feed rate and depth of cut. � EuroJournals Publishing, Inc. 2009. |
author2 |
35801121900 |
author_facet |
35801121900 Khidhir B.A. Mohamed B. |
format |
Article |
author |
Khidhir B.A. Mohamed B. |
author_sort |
Khidhir B.A. |
title |
Selecting of cutting parameters from prediction model of cutting force for turning nickel based hastelloy C-276 using response surface methodology |
title_short |
Selecting of cutting parameters from prediction model of cutting force for turning nickel based hastelloy C-276 using response surface methodology |
title_full |
Selecting of cutting parameters from prediction model of cutting force for turning nickel based hastelloy C-276 using response surface methodology |
title_fullStr |
Selecting of cutting parameters from prediction model of cutting force for turning nickel based hastelloy C-276 using response surface methodology |
title_full_unstemmed |
Selecting of cutting parameters from prediction model of cutting force for turning nickel based hastelloy C-276 using response surface methodology |
title_sort |
selecting of cutting parameters from prediction model of cutting force for turning nickel based hastelloy c-276 using response surface methodology |
publisher |
EuroJournals, Inc. |
publishDate |
2023 |
_version_ |
1806423506832850944 |
score |
13.226497 |