Lightning forecasting using ANN-BP & radiosonde
This paper presents a concept of predicting lightning with the data from radiosonde and a more reliable dataset of lightning occurances from Tenaga Nasionl Berhad Research Sdn Berhad (TNBR). The location of interest in this research is Kuala Lumpur International Airport (KLIA). The engine used for p...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Conference paper |
Published: |
2023
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-30588 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-305882023-12-29T15:49:53Z Lightning forecasting using ANN-BP & radiosonde Weng L.Y. Omar J.B. Siah Y.K. Ahmed S.K. Abidin I.B.Z. Abdullah N. 26326032700 24463418200 24448864400 25926812900 35606640500 26422769600 Artificial intelligence Lightning forecasting Lightning prediction Neural networks Data processing Forecasting Information science Intelligent computing Neural networks Radiosondes Data sets Kuala lumpur international airports Lightning This paper presents a concept of predicting lightning with the data from radiosonde and a more reliable dataset of lightning occurances from Tenaga Nasionl Berhad Research Sdn Berhad (TNBR). The location of interest in this research is Kuala Lumpur International Airport (KLIA). The engine used for prediction is of a Neural Network Back Propogation type (ANN-BP). The initial results show that the combination of datasets and engine are workable, however the prediction results seem to be more biased towards lightning days as compared to non-lightning days. � 2010 IEEE. Final 2023-12-29T07:49:53Z 2023-12-29T07:49:53Z 2010 Conference paper 10.1109/ICICCI.2010.83 2-s2.0-77958489349 https://www.scopus.com/inward/record.uri?eid=2-s2.0-77958489349&doi=10.1109%2fICICCI.2010.83&partnerID=40&md5=eda7fdca81ad6d51264bc41634c740d9 https://irepository.uniten.edu.my/handle/123456789/30588 5566013 152 155 Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
topic |
Artificial intelligence Lightning forecasting Lightning prediction Neural networks Data processing Forecasting Information science Intelligent computing Neural networks Radiosondes Data sets Kuala lumpur international airports Lightning |
spellingShingle |
Artificial intelligence Lightning forecasting Lightning prediction Neural networks Data processing Forecasting Information science Intelligent computing Neural networks Radiosondes Data sets Kuala lumpur international airports Lightning Weng L.Y. Omar J.B. Siah Y.K. Ahmed S.K. Abidin I.B.Z. Abdullah N. Lightning forecasting using ANN-BP & radiosonde |
description |
This paper presents a concept of predicting lightning with the data from radiosonde and a more reliable dataset of lightning occurances from Tenaga Nasionl Berhad Research Sdn Berhad (TNBR). The location of interest in this research is Kuala Lumpur International Airport (KLIA). The engine used for prediction is of a Neural Network Back Propogation type (ANN-BP). The initial results show that the combination of datasets and engine are workable, however the prediction results seem to be more biased towards lightning days as compared to non-lightning days. � 2010 IEEE. |
author2 |
26326032700 |
author_facet |
26326032700 Weng L.Y. Omar J.B. Siah Y.K. Ahmed S.K. Abidin I.B.Z. Abdullah N. |
format |
Conference paper |
author |
Weng L.Y. Omar J.B. Siah Y.K. Ahmed S.K. Abidin I.B.Z. Abdullah N. |
author_sort |
Weng L.Y. |
title |
Lightning forecasting using ANN-BP & radiosonde |
title_short |
Lightning forecasting using ANN-BP & radiosonde |
title_full |
Lightning forecasting using ANN-BP & radiosonde |
title_fullStr |
Lightning forecasting using ANN-BP & radiosonde |
title_full_unstemmed |
Lightning forecasting using ANN-BP & radiosonde |
title_sort |
lightning forecasting using ann-bp & radiosonde |
publishDate |
2023 |
_version_ |
1806425598065639424 |
score |
13.222552 |