Lightning forecasting using ANN-BP & radiosonde

This paper presents a concept of predicting lightning with the data from radiosonde and a more reliable dataset of lightning occurances from Tenaga Nasionl Berhad Research Sdn Berhad (TNBR). The location of interest in this research is Kuala Lumpur International Airport (KLIA). The engine used for p...

Full description

Saved in:
Bibliographic Details
Main Authors: Weng L.Y., Omar J.B., Siah Y.K., Ahmed S.K., Abidin I.B.Z., Abdullah N.
Other Authors: 26326032700
Format: Conference paper
Published: 2023
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-30588
record_format dspace
spelling my.uniten.dspace-305882023-12-29T15:49:53Z Lightning forecasting using ANN-BP & radiosonde Weng L.Y. Omar J.B. Siah Y.K. Ahmed S.K. Abidin I.B.Z. Abdullah N. 26326032700 24463418200 24448864400 25926812900 35606640500 26422769600 Artificial intelligence Lightning forecasting Lightning prediction Neural networks Data processing Forecasting Information science Intelligent computing Neural networks Radiosondes Data sets Kuala lumpur international airports Lightning This paper presents a concept of predicting lightning with the data from radiosonde and a more reliable dataset of lightning occurances from Tenaga Nasionl Berhad Research Sdn Berhad (TNBR). The location of interest in this research is Kuala Lumpur International Airport (KLIA). The engine used for prediction is of a Neural Network Back Propogation type (ANN-BP). The initial results show that the combination of datasets and engine are workable, however the prediction results seem to be more biased towards lightning days as compared to non-lightning days. � 2010 IEEE. Final 2023-12-29T07:49:53Z 2023-12-29T07:49:53Z 2010 Conference paper 10.1109/ICICCI.2010.83 2-s2.0-77958489349 https://www.scopus.com/inward/record.uri?eid=2-s2.0-77958489349&doi=10.1109%2fICICCI.2010.83&partnerID=40&md5=eda7fdca81ad6d51264bc41634c740d9 https://irepository.uniten.edu.my/handle/123456789/30588 5566013 152 155 Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
topic Artificial intelligence
Lightning forecasting
Lightning prediction
Neural networks
Data processing
Forecasting
Information science
Intelligent computing
Neural networks
Radiosondes
Data sets
Kuala lumpur international airports
Lightning
spellingShingle Artificial intelligence
Lightning forecasting
Lightning prediction
Neural networks
Data processing
Forecasting
Information science
Intelligent computing
Neural networks
Radiosondes
Data sets
Kuala lumpur international airports
Lightning
Weng L.Y.
Omar J.B.
Siah Y.K.
Ahmed S.K.
Abidin I.B.Z.
Abdullah N.
Lightning forecasting using ANN-BP & radiosonde
description This paper presents a concept of predicting lightning with the data from radiosonde and a more reliable dataset of lightning occurances from Tenaga Nasionl Berhad Research Sdn Berhad (TNBR). The location of interest in this research is Kuala Lumpur International Airport (KLIA). The engine used for prediction is of a Neural Network Back Propogation type (ANN-BP). The initial results show that the combination of datasets and engine are workable, however the prediction results seem to be more biased towards lightning days as compared to non-lightning days. � 2010 IEEE.
author2 26326032700
author_facet 26326032700
Weng L.Y.
Omar J.B.
Siah Y.K.
Ahmed S.K.
Abidin I.B.Z.
Abdullah N.
format Conference paper
author Weng L.Y.
Omar J.B.
Siah Y.K.
Ahmed S.K.
Abidin I.B.Z.
Abdullah N.
author_sort Weng L.Y.
title Lightning forecasting using ANN-BP & radiosonde
title_short Lightning forecasting using ANN-BP & radiosonde
title_full Lightning forecasting using ANN-BP & radiosonde
title_fullStr Lightning forecasting using ANN-BP & radiosonde
title_full_unstemmed Lightning forecasting using ANN-BP & radiosonde
title_sort lightning forecasting using ann-bp & radiosonde
publishDate 2023
_version_ 1806425598065639424
score 13.222552