Numerical simulation of heat transfer enhancement in wavy microchannel heat sink
In this paper, heat transfer and water flow characteristics in wavy microchannel heat sink (WMCHS) with rectangular cross-section with various wavy amplitudes ranged from 125 to 500. ?m is numerically investigated. This investigation covers Reynolds number in the range of 100 to 1000. The three-dime...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2023
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-30563 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-305632023-12-29T15:49:31Z Numerical simulation of heat transfer enhancement in wavy microchannel heat sink Mohammed H.A. Gunnasegaran P. Shuaib N.H. 15837504600 35778031300 13907934500 Heat transfer enhancement Microchannel heat sink (MCHS) Pressure drop Wavy microchannels Flow of water Friction Heat sinks Heat transfer coefficients Hydraulics Laminar flow Pressure drop Pressure effects Reynolds number Shear stress Strength of materials Walls (structural partitions) Flow and heat transfer Friction factors Governing equations Heat Transfer enhancement Heat transfer performance Micro channel heat sinks Microchannel heat sink (MCHS) Numerical simulation Rectangular cross-sections Thermal Performance Transfer phenomenon Wall shear stress Water flows Wavy flow Wavy microchannels Microchannels In this paper, heat transfer and water flow characteristics in wavy microchannel heat sink (WMCHS) with rectangular cross-section with various wavy amplitudes ranged from 125 to 500. ?m is numerically investigated. This investigation covers Reynolds number in the range of 100 to 1000. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using the finite-volume method (FVM). The water flow field and heat transfer phenomena inside the heated wavy microchannels is simulated and the results are compared with the straight microchannels. The effect of using a wavy flow channel on the MCHS thermal performance, the pressure drop, the friction factor, and wall shear stress is reported in this article. It is found that the heat transfer performance of the wavy microchannels is much better than the straight microchannels with the same cross-section. The pressure drop penalty of the wavy microchannels is much smaller than the heat transfer enhancement achievement. Both friction factor and wall shear stress are increased proportionally as the amplitude of wavy microchannels increased. � 2010 Elsevier Ltd. Final 2023-12-29T07:49:31Z 2023-12-29T07:49:31Z 2011 Article 10.1016/j.icheatmasstransfer.2010.09.012 2-s2.0-78650299874 https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650299874&doi=10.1016%2fj.icheatmasstransfer.2010.09.012&partnerID=40&md5=c713e609b1c39ecfe540edd49c5255ae https://irepository.uniten.edu.my/handle/123456789/30563 38 1 63 68 Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
topic |
Heat transfer enhancement Microchannel heat sink (MCHS) Pressure drop Wavy microchannels Flow of water Friction Heat sinks Heat transfer coefficients Hydraulics Laminar flow Pressure drop Pressure effects Reynolds number Shear stress Strength of materials Walls (structural partitions) Flow and heat transfer Friction factors Governing equations Heat Transfer enhancement Heat transfer performance Micro channel heat sinks Microchannel heat sink (MCHS) Numerical simulation Rectangular cross-sections Thermal Performance Transfer phenomenon Wall shear stress Water flows Wavy flow Wavy microchannels Microchannels |
spellingShingle |
Heat transfer enhancement Microchannel heat sink (MCHS) Pressure drop Wavy microchannels Flow of water Friction Heat sinks Heat transfer coefficients Hydraulics Laminar flow Pressure drop Pressure effects Reynolds number Shear stress Strength of materials Walls (structural partitions) Flow and heat transfer Friction factors Governing equations Heat Transfer enhancement Heat transfer performance Micro channel heat sinks Microchannel heat sink (MCHS) Numerical simulation Rectangular cross-sections Thermal Performance Transfer phenomenon Wall shear stress Water flows Wavy flow Wavy microchannels Microchannels Mohammed H.A. Gunnasegaran P. Shuaib N.H. Numerical simulation of heat transfer enhancement in wavy microchannel heat sink |
description |
In this paper, heat transfer and water flow characteristics in wavy microchannel heat sink (WMCHS) with rectangular cross-section with various wavy amplitudes ranged from 125 to 500. ?m is numerically investigated. This investigation covers Reynolds number in the range of 100 to 1000. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using the finite-volume method (FVM). The water flow field and heat transfer phenomena inside the heated wavy microchannels is simulated and the results are compared with the straight microchannels. The effect of using a wavy flow channel on the MCHS thermal performance, the pressure drop, the friction factor, and wall shear stress is reported in this article. It is found that the heat transfer performance of the wavy microchannels is much better than the straight microchannels with the same cross-section. The pressure drop penalty of the wavy microchannels is much smaller than the heat transfer enhancement achievement. Both friction factor and wall shear stress are increased proportionally as the amplitude of wavy microchannels increased. � 2010 Elsevier Ltd. |
author2 |
15837504600 |
author_facet |
15837504600 Mohammed H.A. Gunnasegaran P. Shuaib N.H. |
format |
Article |
author |
Mohammed H.A. Gunnasegaran P. Shuaib N.H. |
author_sort |
Mohammed H.A. |
title |
Numerical simulation of heat transfer enhancement in wavy microchannel heat sink |
title_short |
Numerical simulation of heat transfer enhancement in wavy microchannel heat sink |
title_full |
Numerical simulation of heat transfer enhancement in wavy microchannel heat sink |
title_fullStr |
Numerical simulation of heat transfer enhancement in wavy microchannel heat sink |
title_full_unstemmed |
Numerical simulation of heat transfer enhancement in wavy microchannel heat sink |
title_sort |
numerical simulation of heat transfer enhancement in wavy microchannel heat sink |
publishDate |
2023 |
_version_ |
1806428452420583424 |
score |
13.222552 |