QoS routing for multiple additive QoS parameters using genetic algorithm

This paper presents an algorithm for QoS routing using genetic algorithm. The algorithm concentrates on solving the problem of multiple additive QoS parameters, which has been proven to be NP-complete. This paper discusses the various aspects of genetic algorithm design including selection, fitness...

Full description

Saved in:
Bibliographic Details
Main Authors: Yussof S., See O.H.
Other Authors: 16023225600
Format: Conference paper
Published: 2023
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-29835
record_format dspace
spelling my.uniten.dspace-298352023-12-28T16:57:51Z QoS routing for multiple additive QoS parameters using genetic algorithm Yussof S. See O.H. 16023225600 16023044400 Additive QoS parameters Genetic algorithm Multiple additive parameters QoS routing Computer simulation Genetic algorithms Problem solving Telecommunication networks Additive QoS parameters Genetic algorithm design Multiple additive parameters QoS routing Quality of service This paper presents an algorithm for QoS routing using genetic algorithm. The algorithm concentrates on solving the problem of multiple additive QoS parameters, which has been proven to be NP-complete. This paper discusses the various aspects of genetic algorithm design including selection, fitness function, crossover and mutation. The algorithm was implemented and tested on a 5�5 mesh network to test for its effectiveness. The simulation result shows that this algorithm can perform well regardless of the number of QoS parameters used. � 2005 IEEE. Final 2023-12-28T08:57:51Z 2023-12-28T08:57:51Z 2005 Conference paper 10.1109/ICON.2005.1635446 2-s2.0-33847315553 https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847315553&doi=10.1109%2fICON.2005.1635446&partnerID=40&md5=52dc7f2cae2268ef22ea297fe0693e59 https://irepository.uniten.edu.my/handle/123456789/29835 1 1635446 99 104 Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
topic Additive QoS parameters
Genetic algorithm
Multiple additive parameters
QoS routing
Computer simulation
Genetic algorithms
Problem solving
Telecommunication networks
Additive QoS parameters
Genetic algorithm design
Multiple additive parameters
QoS routing
Quality of service
spellingShingle Additive QoS parameters
Genetic algorithm
Multiple additive parameters
QoS routing
Computer simulation
Genetic algorithms
Problem solving
Telecommunication networks
Additive QoS parameters
Genetic algorithm design
Multiple additive parameters
QoS routing
Quality of service
Yussof S.
See O.H.
QoS routing for multiple additive QoS parameters using genetic algorithm
description This paper presents an algorithm for QoS routing using genetic algorithm. The algorithm concentrates on solving the problem of multiple additive QoS parameters, which has been proven to be NP-complete. This paper discusses the various aspects of genetic algorithm design including selection, fitness function, crossover and mutation. The algorithm was implemented and tested on a 5�5 mesh network to test for its effectiveness. The simulation result shows that this algorithm can perform well regardless of the number of QoS parameters used. � 2005 IEEE.
author2 16023225600
author_facet 16023225600
Yussof S.
See O.H.
format Conference paper
author Yussof S.
See O.H.
author_sort Yussof S.
title QoS routing for multiple additive QoS parameters using genetic algorithm
title_short QoS routing for multiple additive QoS parameters using genetic algorithm
title_full QoS routing for multiple additive QoS parameters using genetic algorithm
title_fullStr QoS routing for multiple additive QoS parameters using genetic algorithm
title_full_unstemmed QoS routing for multiple additive QoS parameters using genetic algorithm
title_sort qos routing for multiple additive qos parameters using genetic algorithm
publishDate 2023
_version_ 1806426182229426176
score 13.222552