Gradient auto-tuned Takagi-Sugeno Fuzzy Forward control of a HVAC system using predicted mean vote index
Controllers of HVAC systems are expected to be able to manipulate the inherent nonlinear characteristics of these large scale systems that also have pure lag times, big thermal inertia, uncertain disturbance factors and constraints. In addition, indoor thermal comfort is affected by both temperature...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2023
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Controllers of HVAC systems are expected to be able to manipulate the inherent nonlinear characteristics of these large scale systems that also have pure lag times, big thermal inertia, uncertain disturbance factors and constraints. In addition, indoor thermal comfort is affected by both temperature and humidity, which are coupled properties. To control these coupled characteristics and tackle nonlinearities effectively, this paper proposes an online tuned Takagi-Sugeno Fuzzy Forward (TSFF) control strategy. The TS model is first trained offline using Gauss-Newton Method for Nonlinear Regression (GNMNR) algorithm with data collected from both building and HVAC system equipments. The model is then tuned online using the gradient algorithm to enhance the stability of the overall system and reject disturbances and uncertainty effects. As control objective, predicted mean vote (PMV) is adopted to avoid temperature-humidity coupling, thermal sensitivity and to save energy at the same time. The proposed TSFF control method is tested in simulation taking into account practical variations such as thermal parameters of buildings, weather conditions and other indoor residential loads. For comparison purposes, normal Takagi-Sugeno fuzzy and hybrid PID Cascade control schemes were also tested. The results demonstrated superior performance, adaptation and robustness of the proposed TSFF control strategy. � 2012 Elsevier B.V. All rights reserved. |
---|