Effects of electron irradiation on the phase and microstructure of TiO 2 added Bi2Sr2CaCu2O8 (Bi-2212) superconductor ceramics

For high-temperature superconductors to be used in engineering applications, the compounds must be fabricated into composite elements with the required microstructure to provide mechanical strength. Titanium oxide having very high melting point with low heat capacity, is an excellent candidate for r...

Full description

Saved in:
Bibliographic Details
Main Authors: Hamid N.A., Abdullah Y., Mohd Razif S.K., Nizam Asbullah M.S.
Other Authors: 6604077116
Format: Conference paper
Published: 2023
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-29438
record_format dspace
spelling my.uniten.dspace-294382023-12-28T12:13:05Z Effects of electron irradiation on the phase and microstructure of TiO 2 added Bi2Sr2CaCu2O8 (Bi-2212) superconductor ceramics Hamid N.A. Abdullah Y. Mohd Razif S.K. Nizam Asbullah M.S. 6604077116 6508386982 53463974000 55702875300 Bi-2212 phase superconductor microstructure flux pinning For high-temperature superconductors to be used in engineering applications, the compounds must be fabricated into composite elements with the required microstructure to provide mechanical strength. Titanium oxide having very high melting point with low heat capacity, is an excellent candidate for reinforcement of brittle materials such as superconductor ceramics. In addition to high melting point, TiO2 is also capable of establishing flux pinning centers in Bi-2212 superconductor compounds. As such, TiO2 has the characteristics to reinforce composite materials without compromising their superconducting properties. To further enhance the flux pinning properties, irradiation is one of the techniques that can be used to create the required point defects. Besides, irradiation is able to enhance the mechanical properties of ceramics materials. In this study, the effect of electron irradiation on TiO2 added Bi-2212 superconductor ceramics was studied through phase and microstructure characteristics of irradiated and non-irradiated samples. Characterizations were done by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) analysis. The XRD patterns for both irradiated and non-irradiated samples show well-defined peaks all of which could be indexed on the basis of the Bi-2212 structure. In addition, the XRD patterns indicate that electron irradiation of 100 kGray enhanced the Bi-2212 superconducting phase in the compounds. Results of SEM micrographs show improvement in the texture of the microstructure for samples that are subjected to electron irradiation of 100 kGray. The grains are seen to align in much lower degree of orientation. � 2013 AIP Publishing LLC. Final 2023-12-28T04:13:05Z 2023-12-28T04:13:05Z 2013 Conference paper 10.1063/1.4803610 2-s2.0-84877851948 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84877851948&doi=10.1063%2f1.4803610&partnerID=40&md5=9006daaccc15a5aadfbe0d8e275b057d https://irepository.uniten.edu.my/handle/123456789/29438 1528 288 291 Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
topic Bi-2212 phase superconductor
microstructure
flux pinning
spellingShingle Bi-2212 phase superconductor
microstructure
flux pinning
Hamid N.A.
Abdullah Y.
Mohd Razif S.K.
Nizam Asbullah M.S.
Effects of electron irradiation on the phase and microstructure of TiO 2 added Bi2Sr2CaCu2O8 (Bi-2212) superconductor ceramics
description For high-temperature superconductors to be used in engineering applications, the compounds must be fabricated into composite elements with the required microstructure to provide mechanical strength. Titanium oxide having very high melting point with low heat capacity, is an excellent candidate for reinforcement of brittle materials such as superconductor ceramics. In addition to high melting point, TiO2 is also capable of establishing flux pinning centers in Bi-2212 superconductor compounds. As such, TiO2 has the characteristics to reinforce composite materials without compromising their superconducting properties. To further enhance the flux pinning properties, irradiation is one of the techniques that can be used to create the required point defects. Besides, irradiation is able to enhance the mechanical properties of ceramics materials. In this study, the effect of electron irradiation on TiO2 added Bi-2212 superconductor ceramics was studied through phase and microstructure characteristics of irradiated and non-irradiated samples. Characterizations were done by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) analysis. The XRD patterns for both irradiated and non-irradiated samples show well-defined peaks all of which could be indexed on the basis of the Bi-2212 structure. In addition, the XRD patterns indicate that electron irradiation of 100 kGray enhanced the Bi-2212 superconducting phase in the compounds. Results of SEM micrographs show improvement in the texture of the microstructure for samples that are subjected to electron irradiation of 100 kGray. The grains are seen to align in much lower degree of orientation. � 2013 AIP Publishing LLC.
author2 6604077116
author_facet 6604077116
Hamid N.A.
Abdullah Y.
Mohd Razif S.K.
Nizam Asbullah M.S.
format Conference paper
author Hamid N.A.
Abdullah Y.
Mohd Razif S.K.
Nizam Asbullah M.S.
author_sort Hamid N.A.
title Effects of electron irradiation on the phase and microstructure of TiO 2 added Bi2Sr2CaCu2O8 (Bi-2212) superconductor ceramics
title_short Effects of electron irradiation on the phase and microstructure of TiO 2 added Bi2Sr2CaCu2O8 (Bi-2212) superconductor ceramics
title_full Effects of electron irradiation on the phase and microstructure of TiO 2 added Bi2Sr2CaCu2O8 (Bi-2212) superconductor ceramics
title_fullStr Effects of electron irradiation on the phase and microstructure of TiO 2 added Bi2Sr2CaCu2O8 (Bi-2212) superconductor ceramics
title_full_unstemmed Effects of electron irradiation on the phase and microstructure of TiO 2 added Bi2Sr2CaCu2O8 (Bi-2212) superconductor ceramics
title_sort effects of electron irradiation on the phase and microstructure of tio 2 added bi2sr2cacu2o8 (bi-2212) superconductor ceramics
publishDate 2023
_version_ 1806427679654674432
score 13.222552