DEVELOPING PLASTIC RECYCLING CLASSIFIER BY DEEP LEARNING AND DIRECTED ACYCLIC GRAPH RESIDUAL NETWORK
Recycling is one of the most important approaches to safeguard the environment since it aims to reduce waste in landfills while conserving natural resources. Using deep Learning networks, this group of wastes may be automatically classified on the belts of a waste sorting plant. However, a basic set...
保存先:
主要な著者: | Mohammed A.B., Al-Mafrji A.A.M., Yassen M.S., Sabry A.H. |
---|---|
その他の著者: | 57686887900 |
フォーマット: | 論文 |
出版事項: |
Technology Center
2023
|
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Transformation models of directed cyclic graph onto acyclic graph and mapping for task assignment problem
著者:: Ariffin, Wan Nor Munirah
出版事項: (2021) -
Calcification detection for intravascular ultrasound image using direct acyclic graph architecture: pre-trained model for 1-channel image
著者:: Sofian, Hannah, 等
出版事項: (2021) -
An extended class of acyclically testable circuits
著者:: Oka, Nobuyo, 等
出版事項: (2007) -
Classifying plastic waste using deep convolutional neural networks for efficient plastic waste management
著者:: Ahmad Radzi, Nur Iwana, 等
出版事項: (2022) -
A new class of sequential circuits with acyclic test generation complexity
著者:: Ooi, Chia Yee, 等
出版事項: (2006)