Flight Trajectories Optimization of Fixed-Wing UAV by Bank-Turn Mechanism
This paper addresses an optimization of Unmanned Aerial Vehicle (UAV) flight trajectories by bank-turn mechanism for a fixed-wing UAV at a constant altitude. The flight trajectories should be optimal and stay in the UAV flight operational area. The maneuver planning is conducted in two steps, which...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
MDPI
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-26947 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-269472023-05-29T17:38:05Z Flight Trajectories Optimization of Fixed-Wing UAV by Bank-Turn Mechanism Machmudah A. Shanmugavel M. Parman S. Manan T.S.A. Dutykh D. Beddu S. Rajabi A. 36442829100 22635345600 6603861052 57219650719 15020183900 55812080500 56622591700 This paper addresses an optimization of Unmanned Aerial Vehicle (UAV) flight trajectories by bank-turn mechanism for a fixed-wing UAV at a constant altitude. The flight trajectories should be optimal and stay in the UAV flight operational area. The maneuver planning is conducted in two steps, which are UAV path planning and UAV flight trajectory planning. For the first step, the Bezier curve is employed as a maneuvering path. The path planning optimization objective is to minimize the path length while satisfying maximum curvature and collision avoidance constraints. The flight trajectories optimization objective is to minimize maneuvering time and load factor considering, minimum/maximum speed, minimum/maximum acceleration, maximum roll angle, maximum turn rate, and aerodynamics constraints. The variable speed trajectory generation is developed within allowable speed zone considering these UAV flight constraints by employing meta-heuristic optimizations. Results show that the PSO have outperformed the GA and the GWO for both steps of path planning and trajectory planning. The variable speed has succeeded in reducing the load factor during the bank-turn mechanism using the Bezier curve. The variable speed is recommended to be conducted when the result of the maneuvering path involve the lower turning radius. A simultaneous on arrival target mission has also succeeded to be conducted using the combination of the variable speed and constant speed strategies. � 2022 by the authors. Licensee MDPI, Basel, Switzerland. Final 2023-05-29T09:38:04Z 2023-05-29T09:38:04Z 2022 Article 10.3390/drones6030069 2-s2.0-85126082891 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126082891&doi=10.3390%2fdrones6030069&partnerID=40&md5=a6490a26da116d6a28445cfb936615f3 https://irepository.uniten.edu.my/handle/123456789/26947 6 3 69 All Open Access, Gold MDPI Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
This paper addresses an optimization of Unmanned Aerial Vehicle (UAV) flight trajectories by bank-turn mechanism for a fixed-wing UAV at a constant altitude. The flight trajectories should be optimal and stay in the UAV flight operational area. The maneuver planning is conducted in two steps, which are UAV path planning and UAV flight trajectory planning. For the first step, the Bezier curve is employed as a maneuvering path. The path planning optimization objective is to minimize the path length while satisfying maximum curvature and collision avoidance constraints. The flight trajectories optimization objective is to minimize maneuvering time and load factor considering, minimum/maximum speed, minimum/maximum acceleration, maximum roll angle, maximum turn rate, and aerodynamics constraints. The variable speed trajectory generation is developed within allowable speed zone considering these UAV flight constraints by employing meta-heuristic optimizations. Results show that the PSO have outperformed the GA and the GWO for both steps of path planning and trajectory planning. The variable speed has succeeded in reducing the load factor during the bank-turn mechanism using the Bezier curve. The variable speed is recommended to be conducted when the result of the maneuvering path involve the lower turning radius. A simultaneous on arrival target mission has also succeeded to be conducted using the combination of the variable speed and constant speed strategies. � 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
author2 |
36442829100 |
author_facet |
36442829100 Machmudah A. Shanmugavel M. Parman S. Manan T.S.A. Dutykh D. Beddu S. Rajabi A. |
format |
Article |
author |
Machmudah A. Shanmugavel M. Parman S. Manan T.S.A. Dutykh D. Beddu S. Rajabi A. |
spellingShingle |
Machmudah A. Shanmugavel M. Parman S. Manan T.S.A. Dutykh D. Beddu S. Rajabi A. Flight Trajectories Optimization of Fixed-Wing UAV by Bank-Turn Mechanism |
author_sort |
Machmudah A. |
title |
Flight Trajectories Optimization of Fixed-Wing UAV by Bank-Turn Mechanism |
title_short |
Flight Trajectories Optimization of Fixed-Wing UAV by Bank-Turn Mechanism |
title_full |
Flight Trajectories Optimization of Fixed-Wing UAV by Bank-Turn Mechanism |
title_fullStr |
Flight Trajectories Optimization of Fixed-Wing UAV by Bank-Turn Mechanism |
title_full_unstemmed |
Flight Trajectories Optimization of Fixed-Wing UAV by Bank-Turn Mechanism |
title_sort |
flight trajectories optimization of fixed-wing uav by bank-turn mechanism |
publisher |
MDPI |
publishDate |
2023 |
_version_ |
1806424042540892160 |
score |
13.223943 |