Multi-Objective PSO with Passive Congregation for Load Balancing Problem
High-level architecture (HLA) and Distributed Interactive Simulation (DIS) are commonly used for the distributed system. However, HLA suffers from a resource allocation problem and to solve this issue, optimization of load balancing is required. Efficient load balancing can minimize the simulation t...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Agora University
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-26491 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-264912023-05-29T17:11:09Z Multi-Objective PSO with Passive Congregation for Load Balancing Problem Marufuzzaman M. Timu M.A. Sarkar J. Islam A. Rahman L.F. Sidek L.M. 57205234835 57202153630 57290298800 57205026051 36984229900 35070506500 High-level architecture (HLA) and Distributed Interactive Simulation (DIS) are commonly used for the distributed system. However, HLA suffers from a resource allocation problem and to solve this issue, optimization of load balancing is required. Efficient load balancing can minimize the simulation time of HLA and this optimization can be done using the multi-objective evolutionary algorithms (MOEA). Multi-Objective Particle Swarm Optimization (MOPSO) based on crowding distance (CD) is a popular MOEA method used to balance HLA load. In this research, the efficiency of MOPSO-CD is further improved by introducing the passive congregation (PC) method. Several simulation tests are done on this improved MOPSO-CD-PC method and the results showed that in terms of Coverage, Spacing, Non-dominated solutions and Inverted generational distance metrics, the MOPSO-CD-PC performed better than the previous MOPSO-CD algorithm. Hence, it can be a useful tool to optimize the load balancing problem in HLA. � 2021. by the authors. All Rights Reserved. Final 2023-05-29T09:11:09Z 2023-05-29T09:11:09Z 2021 Article 10.15837/ijccc.2021.5.4274 2-s2.0-85116812487 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116812487&doi=10.15837%2fijccc.2021.5.4274&partnerID=40&md5=4611ca4bdfc7c74e4535325232cf9b0c https://irepository.uniten.edu.my/handle/123456789/26491 16 5 1 7 All Open Access, Gold Agora University Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
High-level architecture (HLA) and Distributed Interactive Simulation (DIS) are commonly used for the distributed system. However, HLA suffers from a resource allocation problem and to solve this issue, optimization of load balancing is required. Efficient load balancing can minimize the simulation time of HLA and this optimization can be done using the multi-objective evolutionary algorithms (MOEA). Multi-Objective Particle Swarm Optimization (MOPSO) based on crowding distance (CD) is a popular MOEA method used to balance HLA load. In this research, the efficiency of MOPSO-CD is further improved by introducing the passive congregation (PC) method. Several simulation tests are done on this improved MOPSO-CD-PC method and the results showed that in terms of Coverage, Spacing, Non-dominated solutions and Inverted generational distance metrics, the MOPSO-CD-PC performed better than the previous MOPSO-CD algorithm. Hence, it can be a useful tool to optimize the load balancing problem in HLA. � 2021. by the authors. All Rights Reserved. |
author2 |
57205234835 |
author_facet |
57205234835 Marufuzzaman M. Timu M.A. Sarkar J. Islam A. Rahman L.F. Sidek L.M. |
format |
Article |
author |
Marufuzzaman M. Timu M.A. Sarkar J. Islam A. Rahman L.F. Sidek L.M. |
spellingShingle |
Marufuzzaman M. Timu M.A. Sarkar J. Islam A. Rahman L.F. Sidek L.M. Multi-Objective PSO with Passive Congregation for Load Balancing Problem |
author_sort |
Marufuzzaman M. |
title |
Multi-Objective PSO with Passive Congregation for Load Balancing Problem |
title_short |
Multi-Objective PSO with Passive Congregation for Load Balancing Problem |
title_full |
Multi-Objective PSO with Passive Congregation for Load Balancing Problem |
title_fullStr |
Multi-Objective PSO with Passive Congregation for Load Balancing Problem |
title_full_unstemmed |
Multi-Objective PSO with Passive Congregation for Load Balancing Problem |
title_sort |
multi-objective pso with passive congregation for load balancing problem |
publisher |
Agora University |
publishDate |
2023 |
_version_ |
1806428174579400704 |
score |
13.223943 |