Minimizing Classification Errors in Imbalanced Dataset Using Means of Sampling
Classification (of information); Learning algorithms; Students; Class imbalance; Data level; Over sampling; Performance prediction; SMOTE; Spread subsampling; Student performance; Student performance prediction; Under-sampling; Machine learning
保存先:
主要な著者: | Khan I., Ahmad A.R., Jabeur N., Mahdi M.N. |
---|---|
その他の著者: | 58061521900 |
フォーマット: | Conference Paper |
出版事項: |
Springer Science and Business Media Deutschland GmbH
2023
|
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Classification of imbalanced datasets using naive bayes
著者:: Mohd. Sobran, Nur Maisarah
出版事項: (2011) -
Multi-Objective Hybrid Algorithm For
The Classification Of Imbalanced
Datasets
著者:: Saeed, Sana
出版事項: (2019) -
AK-means geometric smote with data complexity analysis for imbalanced dataset
著者:: Nur Athirah, Azhar
出版事項: (2023) -
Evolutionary deep belief networks with bootstrap sampling for imbalanced class datasets
著者:: Amri, A’inur A’fifah, 等
出版事項: (2019) -
Data sampling methods on imbalanced datasets for pneumonia detection in covid-19 patients
著者:: Dzulkefli, Syasya Farina
出版事項: (2022)