A comparative study of major clustering techniques for MAR learning usability prioritization processes

Augmented reality; Hierarchical clustering; Usability engineering; Clustering techniques; Comparative studies; K-means; Mobile augmented reality; Mode-based; Prioritization process; Related works; Research methodologies; Iterative methods

Saved in:
Bibliographic Details
Main Authors: Lim K.C., Selamat A., Mohamed Zabil M.H., Selamat M.H., Alias R.A., Mohamed F., Krejcar O.
Other Authors: 57188850203
Format: Conference Paper
Published: IOS Press BV 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-25248
record_format dspace
spelling my.uniten.dspace-252482023-05-29T16:07:35Z A comparative study of major clustering techniques for MAR learning usability prioritization processes Lim K.C. Selamat A. Mohamed Zabil M.H. Selamat M.H. Alias R.A. Mohamed F. Krejcar O. 57188850203 24468984100 35185866500 57215520379 25928253600 55416008900 14719632500 Augmented reality; Hierarchical clustering; Usability engineering; Clustering techniques; Comparative studies; K-means; Mobile augmented reality; Mode-based; Prioritization process; Related works; Research methodologies; Iterative methods This paper presents and discusses a comparative study of three major clustering categories namely Hierarchical-based, Iterative mode-based and Partition-based in analyzing and prioritizing Mobile Augmented reality (MAR) Learning (MAR-learning) usability data. This paper first discusses the related works in usability and clustering before moving on to the identification of gaps that can be addressed through experimentation. This paper will then propose a research methodology to measure four common clustering techniques on MAR-learning usability data. The paper will then discourse comparative results showing how Mini-batch K-means to be an ideal technique within the experimental setup. The paper will then present important research highlights, discussion, conclusion and future works. � 2020 The authors and IOS Press. All rights reserved. Final 2023-05-29T08:07:34Z 2023-05-29T08:07:34Z 2020 Conference Paper 10.3233/FAIA200577 2-s2.0-85092743262 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092743262&doi=10.3233%2fFAIA200577&partnerID=40&md5=c0adf9d866691ea74410ca1f4c8067eb https://irepository.uniten.edu.my/handle/123456789/25248 327 317 329 IOS Press BV Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Augmented reality; Hierarchical clustering; Usability engineering; Clustering techniques; Comparative studies; K-means; Mobile augmented reality; Mode-based; Prioritization process; Related works; Research methodologies; Iterative methods
author2 57188850203
author_facet 57188850203
Lim K.C.
Selamat A.
Mohamed Zabil M.H.
Selamat M.H.
Alias R.A.
Mohamed F.
Krejcar O.
format Conference Paper
author Lim K.C.
Selamat A.
Mohamed Zabil M.H.
Selamat M.H.
Alias R.A.
Mohamed F.
Krejcar O.
spellingShingle Lim K.C.
Selamat A.
Mohamed Zabil M.H.
Selamat M.H.
Alias R.A.
Mohamed F.
Krejcar O.
A comparative study of major clustering techniques for MAR learning usability prioritization processes
author_sort Lim K.C.
title A comparative study of major clustering techniques for MAR learning usability prioritization processes
title_short A comparative study of major clustering techniques for MAR learning usability prioritization processes
title_full A comparative study of major clustering techniques for MAR learning usability prioritization processes
title_fullStr A comparative study of major clustering techniques for MAR learning usability prioritization processes
title_full_unstemmed A comparative study of major clustering techniques for MAR learning usability prioritization processes
title_sort comparative study of major clustering techniques for mar learning usability prioritization processes
publisher IOS Press BV
publishDate 2023
_version_ 1806423997866311680
score 13.222552