Input attributes optimization using the feasibility of genetic nature inspired algorithm: Application of river flow forecasting

article; feasibility study; forecasting; genetic algorithm; radial basis function neural network; river; time series analysis

Saved in:
Bibliographic Details
Main Authors: Afan H.A., Allawi M.F., El-Shafie A., Yaseen Z.M., Ahmed A.N., Malek M.A., Koting S.B., Salih S.Q., Mohtar W.H.M.W., Lai S.H., Sefelnasr A., Sherif M.
Other Authors: 56436626600
Format: Article
Published: Nature Research 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-25143
record_format dspace
spelling my.uniten.dspace-251432023-05-29T16:06:57Z Input attributes optimization using the feasibility of genetic nature inspired algorithm: Application of river flow forecasting Afan H.A. Allawi M.F. El-Shafie A. Yaseen Z.M. Ahmed A.N. Malek M.A. Koting S.B. Salih S.Q. Mohtar W.H.M.W. Lai S.H. Sefelnasr A. Sherif M. El-Shafie A. 56436626600 57057678400 57207789882 56436206700 57214837520 55636320055 55839645200 57203978808 57215829072 36102664300 6505592467 7005414714 16068189400 article; feasibility study; forecasting; genetic algorithm; radial basis function neural network; river; time series analysis In nature, streamflow pattern is characterized with high non-linearity and non-stationarity. Developing an accurate forecasting model for a streamflow is highly essential for several applications in the field of water resources engineering. One of the main contributors for the modeling reliability is the optimization of the input variables to achieve an accurate forecasting model. The main step of modeling is the selection of the proper input combinations. Hence, developing an algorithm that can determine the optimal input combinations is crucial. This study introduces the Genetic algorithm (GA) for better input combination selection. Radial basis function neural network (RBFNN) is used for monthly streamflow time series forecasting due to its simplicity and effectiveness of integration with the selection algorithm. In this paper, the RBFNN was integrated with the Genetic algorithm (GA) for streamflow forecasting. The RBFNN-GA was applied to forecast streamflow at the High Aswan Dam on the Nile River. The results showed that the proposed model provided high accuracy. The GA algorithm can successfully determine effective input parameters in streamflow time series forecasting. � 2020, The Author(s). Final 2023-05-29T08:06:57Z 2023-05-29T08:06:57Z 2020 Article 10.1038/s41598-020-61355-x 2-s2.0-85082004774 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082004774&doi=10.1038%2fs41598-020-61355-x&partnerID=40&md5=eef3d942bed082e2de92783876a66731 https://irepository.uniten.edu.my/handle/123456789/25143 10 1 4684 All Open Access, Gold, Green Nature Research Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description article; feasibility study; forecasting; genetic algorithm; radial basis function neural network; river; time series analysis
author2 56436626600
author_facet 56436626600
Afan H.A.
Allawi M.F.
El-Shafie A.
Yaseen Z.M.
Ahmed A.N.
Malek M.A.
Koting S.B.
Salih S.Q.
Mohtar W.H.M.W.
Lai S.H.
Sefelnasr A.
Sherif M.
El-Shafie A.
format Article
author Afan H.A.
Allawi M.F.
El-Shafie A.
Yaseen Z.M.
Ahmed A.N.
Malek M.A.
Koting S.B.
Salih S.Q.
Mohtar W.H.M.W.
Lai S.H.
Sefelnasr A.
Sherif M.
El-Shafie A.
spellingShingle Afan H.A.
Allawi M.F.
El-Shafie A.
Yaseen Z.M.
Ahmed A.N.
Malek M.A.
Koting S.B.
Salih S.Q.
Mohtar W.H.M.W.
Lai S.H.
Sefelnasr A.
Sherif M.
El-Shafie A.
Input attributes optimization using the feasibility of genetic nature inspired algorithm: Application of river flow forecasting
author_sort Afan H.A.
title Input attributes optimization using the feasibility of genetic nature inspired algorithm: Application of river flow forecasting
title_short Input attributes optimization using the feasibility of genetic nature inspired algorithm: Application of river flow forecasting
title_full Input attributes optimization using the feasibility of genetic nature inspired algorithm: Application of river flow forecasting
title_fullStr Input attributes optimization using the feasibility of genetic nature inspired algorithm: Application of river flow forecasting
title_full_unstemmed Input attributes optimization using the feasibility of genetic nature inspired algorithm: Application of river flow forecasting
title_sort input attributes optimization using the feasibility of genetic nature inspired algorithm: application of river flow forecasting
publisher Nature Research
publishDate 2023
_version_ 1806428007771930624
score 13.222552