Lightning performance analysis of a rooftop grid-connected solar photovoltaic without external lightning protection system
amplitude modulation; Article; electric current; electric potential; energy resource; lightning; Malaysia; reliability; solar photovoltaic rooftop system; surge protection device; validation process; waveform; computer system; electrode; electromagnetism; hospital; human; power supply; reproducibili...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Public Library of Science
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-24615 |
---|---|
record_format |
dspace |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
amplitude modulation; Article; electric current; electric potential; energy resource; lightning; Malaysia; reliability; solar photovoltaic rooftop system; surge protection device; validation process; waveform; computer system; electrode; electromagnetism; hospital; human; power supply; reproducibility; Computer Systems; Electric Power Supplies; Electrodes; Electromagnetic Phenomena; Hospitals; Humans; Lightning; Malaysia; Reproducibility of Results |
author2 |
57196689134 |
author_facet |
57196689134 Nasir M.S.M. Ab-Kadir M.Z.A. Radzi M.A.M. Izadi M. Ahmad N.I. Zaini N.H. |
format |
Article |
author |
Nasir M.S.M. Ab-Kadir M.Z.A. Radzi M.A.M. Izadi M. Ahmad N.I. Zaini N.H. |
spellingShingle |
Nasir M.S.M. Ab-Kadir M.Z.A. Radzi M.A.M. Izadi M. Ahmad N.I. Zaini N.H. Lightning performance analysis of a rooftop grid-connected solar photovoltaic without external lightning protection system |
author_sort |
Nasir M.S.M. |
title |
Lightning performance analysis of a rooftop grid-connected solar photovoltaic without external lightning protection system |
title_short |
Lightning performance analysis of a rooftop grid-connected solar photovoltaic without external lightning protection system |
title_full |
Lightning performance analysis of a rooftop grid-connected solar photovoltaic without external lightning protection system |
title_fullStr |
Lightning performance analysis of a rooftop grid-connected solar photovoltaic without external lightning protection system |
title_full_unstemmed |
Lightning performance analysis of a rooftop grid-connected solar photovoltaic without external lightning protection system |
title_sort |
lightning performance analysis of a rooftop grid-connected solar photovoltaic without external lightning protection system |
publisher |
Public Library of Science |
publishDate |
2023 |
_version_ |
1806428030612013056 |
spelling |
my.uniten.dspace-246152023-05-29T15:25:08Z Lightning performance analysis of a rooftop grid-connected solar photovoltaic without external lightning protection system Nasir M.S.M. Ab-Kadir M.Z.A. Radzi M.A.M. Izadi M. Ahmad N.I. Zaini N.H. 57196689134 25947297000 57202803173 56406980700 56405049800 55865700900 amplitude modulation; Article; electric current; electric potential; energy resource; lightning; Malaysia; reliability; solar photovoltaic rooftop system; surge protection device; validation process; waveform; computer system; electrode; electromagnetism; hospital; human; power supply; reproducibility; Computer Systems; Electric Power Supplies; Electrodes; Electromagnetic Phenomena; Hospitals; Humans; Lightning; Malaysia; Reproducibility of Results The Sustainable Energy Development Authority of Malaysia (SEDA) regularly receives complaints about damaged components and distribution boards of PV systems due to lightning strikes. Permanent and momentary interruptions of distribution circuits may also occur from the disturbance. In this paper, a solar PV Rooftop system (3.91 kWp) provided by SEDA was modelled in the PSCAD/EMTDC. The Heidler function was used as a lightning current waveform model to analyse the transient current and voltage at two different points susceptible to the influence of lightning events such as different lightning current wave shape, standard lightning current and non-standard lightning current. This study examines the effect on the system components when lightning directly strikes at two different points of the installation. The two points lie between the inverter and the solar PV array and between inverter and grid. Exceptionally high current and voltage due to the direct lightning strike on a certain point of a PV Rooftop system was also studied. The result of this case study is observed with and without the inclusion of surge protective devices (SPDs). The parameters used were 31 kA of peak current, 10 metres cable length and lightning impulse current wave shape of 8/20?s. The high current and voltage at P1 striking point were 31 kA and 2397 kV, respectively. As for the AC part, the current and voltage values were found to be 5.97 kA and 5392 kV, respectively.Therefore, SPDs with suitable rating provided by SEDA were deployed. Results showed that high transient current voltage is expected to clamp sharply at the values of 1.915 kV and 0 A at the P1 striking point. As for the AC part, the current and voltage values were found to be 0 kA and 0.751 V, respectively. Varying lightning impulse current wave shapes at striking point P2 showed that the highest voltage was obtained at waveshape 10/350 ?s at 11277 kV followed by wave shapes of 2/70 ?s, 8/20 ?s and 0.7/6 ?s. The high value of transient voltage was clamped at a lower level of 2.029 kV. Different lightning amplitudes were also applied, ranging from 2-200 kA selected based on the CIGRE distribution. It showed that the current and voltage at P1 and P2 were directly proportional. Therefore, the SPD will be designed at an acceptable rating and proper position of SPD installation at solar PV Rooftop will be proposed. The results obtained in this study can then be utilised to appropriately assign a SPD to protect the PV systems that are connected to the grid. Installing SPDs without considering the needs of lightning protection zones would expose the expensive equipment to potential damage even though the proper energy coordination of SPDs is in place. As such, the simulation results provide a basis for controlling the impacts of direct lightning strikes on electrical equipment and power grids and thus justify SPD coordination to ensure the reliability of the system. � 2019 Nasir et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Final 2023-05-29T07:25:08Z 2023-05-29T07:25:08Z 2019 Article 10.1371/journal.pone.0219326 2-s2.0-85069695943 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069695943&doi=10.1371%2fjournal.pone.0219326&partnerID=40&md5=5979412c37578b88519ffcb8aee5eb56 https://irepository.uniten.edu.my/handle/123456789/24615 14 7 e0219326 All Open Access, Gold, Green Public Library of Science Scopus |
score |
13.222552 |