Numerical study of heat transfer and chemical kinetics of solar thermochemical reactor for hydrogen production

A solar thermochemical reactor is a device utilizing concentrated solar energy to conduct hydrogen gas production by two-step water-splitting by dissociation of a reactive material, such as zinc oxide (ZnO). Reactor design, heat transfer, and reaction kinetics contribute a significant portion to the...

Full description

Saved in:
Bibliographic Details
Main Authors: Irsyad A.R., Kim B., Duc D.H., Hassan S.H.B.A., Fushinobu K.
Other Authors: 57203247826
Format: Conference Paper
Published: American Institute of Physics Inc. 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-23751
record_format dspace
spelling my.uniten.dspace-237512023-05-29T14:51:31Z Numerical study of heat transfer and chemical kinetics of solar thermochemical reactor for hydrogen production Irsyad A.R. Kim B. Duc D.H. Hassan S.H.B.A. Fushinobu K. 57203247826 57089366400 57201518752 7201618347 7004131266 A solar thermochemical reactor is a device utilizing concentrated solar energy to conduct hydrogen gas production by two-step water-splitting by dissociation of a reactive material, such as zinc oxide (ZnO). Reactor design, heat transfer, and reaction kinetics contribute a significant portion to the achievement of high solar-to-fuel conversion efficiency. In this work, an investigation of an indirect-cavity type reactor design performance has been conducted by numerical simulation method by coupling the computational model of fluid flow, energy equation, discrete ordinate radiation, and species transport. The reactor consisted of a windowed cavity reactor with an array of five tubes containing the flow of the reactive material. Dissociation of ZnO in a steady state condition of the reactor has been assessed under 1,500 sun heat flux from quartz window. A parametric study has been performed for a variation of the particle's mass flow rate, solar flux peak in, and reactor configuration. The cavity of the reactor was insulated by a ceramic and reflective material to reduce the conduction and radiation losses. Inert gas of Ar was injected into the tube as product carrier. Energy balance analysis and reactor efficiency calculation have been performed to analyze the reactor performance. The results showed that the thermal re-radiation through the window and thermal conduction through the cavity wall dominated the heat losses around 84 % in total. The best operating condition in this study was at a mass flow rate 0.05 g/s, peak-heat-in 2,000 kW/m2, and tubes configuration of the staggered-front dominant. Some recommendations to improve the research include changing the chemical reactant with other metal-oxide which has a lower reactivity, increasing the tubes number to absorb the solar irradiation, combining the metal-oxide decomposition with other processes which require less heat, and applying the special material in window side which can filter the high wavelength from going outside the reactor to decrease the re-radiation losses. � 2018 Author(s). Final 2023-05-29T06:51:31Z 2023-05-29T06:51:31Z 2018 Conference Paper 10.1063/1.5046586 2-s2.0-85051020928 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051020928&doi=10.1063%2f1.5046586&partnerID=40&md5=1b933386fd655657867fbb7ac9236f09 https://irepository.uniten.edu.my/handle/123456789/23751 1984 20002 All Open Access, Bronze American Institute of Physics Inc. Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description A solar thermochemical reactor is a device utilizing concentrated solar energy to conduct hydrogen gas production by two-step water-splitting by dissociation of a reactive material, such as zinc oxide (ZnO). Reactor design, heat transfer, and reaction kinetics contribute a significant portion to the achievement of high solar-to-fuel conversion efficiency. In this work, an investigation of an indirect-cavity type reactor design performance has been conducted by numerical simulation method by coupling the computational model of fluid flow, energy equation, discrete ordinate radiation, and species transport. The reactor consisted of a windowed cavity reactor with an array of five tubes containing the flow of the reactive material. Dissociation of ZnO in a steady state condition of the reactor has been assessed under 1,500 sun heat flux from quartz window. A parametric study has been performed for a variation of the particle's mass flow rate, solar flux peak in, and reactor configuration. The cavity of the reactor was insulated by a ceramic and reflective material to reduce the conduction and radiation losses. Inert gas of Ar was injected into the tube as product carrier. Energy balance analysis and reactor efficiency calculation have been performed to analyze the reactor performance. The results showed that the thermal re-radiation through the window and thermal conduction through the cavity wall dominated the heat losses around 84 % in total. The best operating condition in this study was at a mass flow rate 0.05 g/s, peak-heat-in 2,000 kW/m2, and tubes configuration of the staggered-front dominant. Some recommendations to improve the research include changing the chemical reactant with other metal-oxide which has a lower reactivity, increasing the tubes number to absorb the solar irradiation, combining the metal-oxide decomposition with other processes which require less heat, and applying the special material in window side which can filter the high wavelength from going outside the reactor to decrease the re-radiation losses. � 2018 Author(s).
author2 57203247826
author_facet 57203247826
Irsyad A.R.
Kim B.
Duc D.H.
Hassan S.H.B.A.
Fushinobu K.
format Conference Paper
author Irsyad A.R.
Kim B.
Duc D.H.
Hassan S.H.B.A.
Fushinobu K.
spellingShingle Irsyad A.R.
Kim B.
Duc D.H.
Hassan S.H.B.A.
Fushinobu K.
Numerical study of heat transfer and chemical kinetics of solar thermochemical reactor for hydrogen production
author_sort Irsyad A.R.
title Numerical study of heat transfer and chemical kinetics of solar thermochemical reactor for hydrogen production
title_short Numerical study of heat transfer and chemical kinetics of solar thermochemical reactor for hydrogen production
title_full Numerical study of heat transfer and chemical kinetics of solar thermochemical reactor for hydrogen production
title_fullStr Numerical study of heat transfer and chemical kinetics of solar thermochemical reactor for hydrogen production
title_full_unstemmed Numerical study of heat transfer and chemical kinetics of solar thermochemical reactor for hydrogen production
title_sort numerical study of heat transfer and chemical kinetics of solar thermochemical reactor for hydrogen production
publisher American Institute of Physics Inc.
publishDate 2023
_version_ 1806423536664838144
score 13.223943