Evaluation for long term PM10 concentration forecasting using multi linear regression (MLR) and principal component regression (PCR) models
air quality; atmospheric pollution; computer simulation; forecasting method; multiple regression; numerical model; particulate matter; policy implementation; pollution control; principal component analysis; Kuala Terengganu; Malaysia; Terengganu; West Malaysia
保存先:
主要な著者: | Abdullah S., Ismail M., Fong S.Y., Ahmed A.M.A.N. |
---|---|
その他の著者: | 56509029800 |
フォーマット: | 論文 |
出版事項: |
Thai Society of Higher Eduation Institutes on Environment
2023
|
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Multiple Linear Regression (MLR) and Principal Component Regression (PCR) for ozone (O3) concentrations prediction
著者:: Mohd Napi N.N.L., 等
出版事項: (2023) -
Three-hour-ahead of multiple linear regression (MLR) models for particulate matter (PM10) forecasting
著者:: Mansor A.A., 等
出版事項: (2023) -
Comparison of neural networks prediction and regression analysis (MLR and PCR) in modelling nonlinear system
著者:: Zainal Ahmad ,, 等
出版事項: (2007) -
Assimilation of principal component analysis and wavelet with kernel support vector regression for medium-term financial time series forecasting
著者:: Alhassan, Baba Gimba, 等
出版事項: (2020) -
A note on kernel principal component regression
著者:: Wibowo, Antoni, 等
出版事項: (2012)