Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation

Mesh generation; Multiphase flow; Calibration parameters; Computational deficiency; Interpolation schemes; Level Set; Moving particle semi-implicit; Moving particle semiimplicit method; Moving particles; Particle methods; Numerical methods

Saved in:
Bibliographic Details
Main Authors: Ng K.C., Hwang Y.H., Sheu T.W.H., Yu C.H.
Other Authors: 55310814500
Format: Article
Published: Elsevier B.V. 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-22227
record_format dspace
spelling my.uniten.dspace-222272023-05-29T13:59:43Z Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation Ng K.C. Hwang Y.H. Sheu T.W.H. Yu C.H. 55310814500 7402311620 13302578200 36601916800 Mesh generation; Multiphase flow; Calibration parameters; Computational deficiency; Interpolation schemes; Level Set; Moving particle semi-implicit; Moving particle semiimplicit method; Moving particles; Particle methods; Numerical methods An implementation of a multiphase model in a recently developed Moving Particle Pressure Mesh (MPPM) particle-based solver is reported in the current work. By enforcing the divergence-free condition on the background mesh (pressure mesh), the moving particles are merely treated as observation points without intrinsic mass property, which has surmounted several computational deficiencies in the existing Moving Particle Semi-implicit (MPS) method. In the current work, in order to enhance the smoothness of the fluid interface and simulate interfacial flow with large density ratio without rigorous tuning of calibration parameters as required in most of the existing particle methods, a density interpolation scheme is put forward in the current work by using the conservative level-set method to ensure mass conservation. Several multiphase flow cases are simulated and compared with the existing numerical/theoretical solutions. It is encouraging to observe that the present solutions are more accurate than the numerical solutions based on the existing MPS methods. The proposal of the current Moving Particle Level-Set (MPLS) method thus provides a simple yet effective approach in computing incompressible multiphase flow within the numerical framework of particle method. � 2015 Elsevier B.V. Final 2023-05-29T05:59:43Z 2023-05-29T05:59:43Z 2015 Article 10.1016/j.cpc.2015.06.021 2-s2.0-84942105545 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942105545&doi=10.1016%2fj.cpc.2015.06.021&partnerID=40&md5=24c2d03c492c555228f47f4f32c1bd13 https://irepository.uniten.edu.my/handle/123456789/22227 196 317 334 Elsevier B.V. Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Mesh generation; Multiphase flow; Calibration parameters; Computational deficiency; Interpolation schemes; Level Set; Moving particle semi-implicit; Moving particle semiimplicit method; Moving particles; Particle methods; Numerical methods
author2 55310814500
author_facet 55310814500
Ng K.C.
Hwang Y.H.
Sheu T.W.H.
Yu C.H.
format Article
author Ng K.C.
Hwang Y.H.
Sheu T.W.H.
Yu C.H.
spellingShingle Ng K.C.
Hwang Y.H.
Sheu T.W.H.
Yu C.H.
Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation
author_sort Ng K.C.
title Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation
title_short Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation
title_full Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation
title_fullStr Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation
title_full_unstemmed Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation
title_sort moving particle level-set (mpls) method for incompressible multiphase flow computation
publisher Elsevier B.V.
publishDate 2023
_version_ 1806423351466393600
score 13.211869