A New Remote Sensing Method to Estimate River to Ocean DOC Flux in Peatland Dominated Sarawak Coastal Regions, Borneo

We present a new remote sensing based method to estimate dissolved organic carbon (DOC) flux discharged from rivers into coastal waters off the Sarawak region in Borneo. This method comprises three steps. In the first step, we developed an algorithm for estimating DOC concentrations using the ratio...

Full description

Saved in:
Bibliographic Details
Main Authors: Sim, Chun Hock, Cherukuru, Nagur, Aazani, Mujahid, Patrick, Martin, Sanwlani, Nivedita, Warneke, Thorsten, Rixen, Tim, Notholt, Justus, Müller, Moritz
Format: Article
Language:English
Published: MDPI 2020
Subjects:
Online Access:http://ir.unimas.my/id/eprint/32263/1/A%20New%20Remote%20Sensing%20Method%20to%20Estimate%20River%20toOcean%20DOC%20Flux%20in%20Peatland%20Dominated%20SarawakCoastal%20Regions%2C%20Borneo_pdf.pdf
http://ir.unimas.my/id/eprint/32263/
http://www.mdpi.com/journal/remotesensing
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a new remote sensing based method to estimate dissolved organic carbon (DOC) flux discharged from rivers into coastal waters off the Sarawak region in Borneo. This method comprises three steps. In the first step, we developed an algorithm for estimating DOC concentrations using the ratio of Landsat-8 Red to Green bands B4/B3 (DOC (μM C) = 89.86 ⋅e0.27⋅(B4/B3)), which showed good correlation (R = 0.88) and low mean relative error (+5.71%) between measured and predicted DOC. In the second step, we used TRMM Multisatellite Precipitation Analysis (TMPA) precipitation data to estimate river discharge for the river basins. In the final step, DOC flux for each river catchment was then estimated by combining Landsat-8 derived DOC concentrations and TMPA derived river discharge. The analysis of remote sensing derived DOC flux (April 2013 to December 2018) shows that Sarawak coastal waters off the Rajang river basin, received the highest DOC flux (72% of total) with an average of 168 Gg C per year in our study area, has seasonal variability. The whole of Sarawak represents about 0.1% of the global annual riverine and estuarine DOC flux. The results presented in this study demonstrate the ability to estimate DOC flux using satellite remotely sensed observations.