Trasformation of chitinase gene in yeast pichia pastrosis X33
The discovery of methylotrophic yeast Pichia pastoris has led to efforts in making it a versatile system for the heterologous protein production correspond with the increasing demand for recombinant protein and bioproducts, Chitinase is a group of enzyme that capable to degrade chitin into its low...
Saved in:
Main Author: | |
---|---|
Format: | Final Year Project Report |
Language: | English |
Published: |
Universiti Malaysia Sarawak (UNIMAS)
2015
|
Subjects: | |
Online Access: | http://ir.unimas.my/id/eprint/26831/2/Sakinah%20Binti%20Ibrahim%20%28fulltext%29.pdf http://ir.unimas.my/id/eprint/26831/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.unimas.ir.26831 |
---|---|
record_format |
eprints |
spelling |
my.unimas.ir.268312024-01-31T07:49:34Z http://ir.unimas.my/id/eprint/26831/ Trasformation of chitinase gene in yeast pichia pastrosis X33 Sakinah, Binti Ibrahim. Q Science (General) QR Microbiology The discovery of methylotrophic yeast Pichia pastoris has led to efforts in making it a versatile system for the heterologous protein production correspond with the increasing demand for recombinant protein and bioproducts, Chitinase is a group of enzyme that capable to degrade chitin into its low molecular product chitooligomers, Chitinase bas attracted attention due to its potential in industrial processes such as in biocontrol of plant pathogenic fungi and insect, and production of chitooligosaccharides, that involve in the plant's defense mechanism, However. in biotechnology chitinaso still not commercially used due to high production cost, therefore it is a challenge for scientists to formulate a reliable method to produce chitinase at lower cost In this study, the chitinase gene that was isolated from tbe Metroxylon sagu was constructed under the plasmid pPICZuC in the previous study. The plasmid pPICZuC/chilinase was extracted from the cellular cell, Escherichia coli XLI-Blue, then transformed into P. pastoris X33 by using the EasYCompTM kit Finally, direct PCR screening was done to check the integmtion of chitinase gene into the yeast, and Mut phenotype analysis was done to evaluate the methanol utilization type of the recombinant clones, Based on this study, the tmnsformation was proven its success by the direct PCR screening as the chitinase gene was integrated into the yeast genome. The production of recombinant protein cbitinase "ill assist a means to study the biological functions and activities of this protein especially in plant M. sagu, Universiti Malaysia Sarawak (UNIMAS) 2015 Final Year Project Report NonPeerReviewed text en http://ir.unimas.my/id/eprint/26831/2/Sakinah%20Binti%20Ibrahim%20%28fulltext%29.pdf Sakinah, Binti Ibrahim. (2015) Trasformation of chitinase gene in yeast pichia pastrosis X33. [Final Year Project Report] (Unpublished) |
institution |
Universiti Malaysia Sarawak |
building |
Centre for Academic Information Services (CAIS) |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Sarawak |
content_source |
UNIMAS Institutional Repository |
url_provider |
http://ir.unimas.my/ |
language |
English |
topic |
Q Science (General) QR Microbiology |
spellingShingle |
Q Science (General) QR Microbiology Sakinah, Binti Ibrahim. Trasformation of chitinase gene in yeast pichia pastrosis X33 |
description |
The discovery of methylotrophic yeast Pichia pastoris has led to efforts in making it a versatile system for
the heterologous protein production correspond with the increasing demand for recombinant protein and
bioproducts, Chitinase is a group of enzyme that capable to degrade chitin into its low molecular product
chitooligomers, Chitinase bas attracted attention due to its potential in industrial processes such as in
biocontrol of plant pathogenic fungi and insect, and production of chitooligosaccharides, that involve in the
plant's defense mechanism, However. in biotechnology chitinaso still not commercially used due to high
production cost, therefore it is a challenge for scientists to formulate a reliable method to produce chitinase at
lower cost In this study, the chitinase gene that was isolated from tbe Metroxylon sagu was constructed
under the plasmid pPICZuC in the previous study. The plasmid pPICZuC/chilinase was extracted from the
cellular cell, Escherichia coli XLI-Blue, then transformed into P. pastoris X33 by using the EasYCompTM
kit Finally, direct PCR screening was done to check the integmtion of chitinase gene into the yeast, and Mut
phenotype analysis was done to evaluate the methanol utilization type of the recombinant clones, Based on
this study, the tmnsformation was proven its success by the direct PCR screening as the chitinase gene was
integrated into the yeast genome. The production of recombinant protein cbitinase "ill assist a means to
study the biological functions and activities of this protein especially in plant M. sagu, |
format |
Final Year Project Report |
author |
Sakinah, Binti Ibrahim. |
author_facet |
Sakinah, Binti Ibrahim. |
author_sort |
Sakinah, Binti Ibrahim. |
title |
Trasformation of chitinase gene in yeast pichia pastrosis X33 |
title_short |
Trasformation of chitinase gene in yeast pichia pastrosis X33 |
title_full |
Trasformation of chitinase gene in yeast pichia pastrosis X33 |
title_fullStr |
Trasformation of chitinase gene in yeast pichia pastrosis X33 |
title_full_unstemmed |
Trasformation of chitinase gene in yeast pichia pastrosis X33 |
title_sort |
trasformation of chitinase gene in yeast pichia pastrosis x33 |
publisher |
Universiti Malaysia Sarawak (UNIMAS) |
publishDate |
2015 |
url |
http://ir.unimas.my/id/eprint/26831/2/Sakinah%20Binti%20Ibrahim%20%28fulltext%29.pdf http://ir.unimas.my/id/eprint/26831/ |
_version_ |
1789945459624640512 |
score |
13.211869 |