A comparative study on machine learning approach towards epileptiform eeg signals detection
Electroencephalogram (EEG) signal is extensively used for the diagnosis of various kinds of neurological brain disorders. The classification of normal and abnormal electrical brain spikes through visual inspection is highly subjective and varying across medical experts. Hence, in this project, comp...
Saved in:
主要作者: | Oh, Pearly Bei Qing |
---|---|
格式: | Final Year Project Report |
语言: | English English |
出版: |
Universiti Malaysia Sarawak, (UNIMAS)
2017
|
主题: | |
在线阅读: | http://ir.unimas.my/id/eprint/20936/1/A%20comparative%20study%20on%20machine%20learning%20approach...%2824%20pgs%29.pdf http://ir.unimas.my/id/eprint/20936/8/PEARLY%20OH%20BEl%20QING.pdf http://ir.unimas.my/id/eprint/20936/ |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Analysis of EEG signals using mathematical morphology decomposition and kurtosis: Detection of epileptiforms
由: Qayoom, Abdul, et al.
出版: (2014) -
Dysphoria detection using EEG signals
由: Kamaruddin, Norhaslinda, et al.
出版: (2019) -
Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques
由: Amin, Hafeez Ullah, et al.
出版: (2015) -
Periodic lateralized epileptiform discharges in neuropsychiatric lupus: Association with cerebritis in magnetic resonance imaging and resolution after intravenous immunoglobulin
由: Lim, K-S, et al.
出版: (2010) -
Early detection on autistic children by using EEG signals
由: KM, Zubair, et al.
出版: (2022)