Rainfall Classification for Flood Prediction Using Meteorology Data of Kuching, Sarawak, Malaysia: Backpropagation vs Radial Basis Function Neural Network
Rainfall is often defined by stochastic process due to its random characteristics, i.e. space and time dependent and it is therefore, not easy to predict. In general, rainfall is a highly non-linear and complicated phenomenon. In order to acquire an accurate prediction, advanced computer modeling...
保存先:
主要な著者: | Chai, Soo See, Wong, Wei Keat, Kok, Luong Goh |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
University of Queensland, Australia
2017
|
主題: | |
オンライン・アクセス: | http://ir.unimas.my/id/eprint/15861/1/Rainfall%20Classification%20for%20Flood%20Prediction%20%28abstract%29.pdf http://ir.unimas.my/id/eprint/15861/ http://www.ijesd.org/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Backpropagation vs. radial basis function neural model : Rainfall intensity classification for flood prediction using meteorology data
著者:: Chai, S.S., 等
出版事項: (2016) -
Daily Rainfall Forecasting Using Meteorology Data with Long Short-Term Memory (LSTM) Network
著者:: Soo See, Chai, 等
出版事項: (2022) -
Radial basis function neural network learning with modified backpropagation algorithm
著者:: Tukur, Usman Muhammad
出版事項: (2014) -
Comparative study of classification tissue in medical imaging using radial basis function (RBF) and backpropagation (BP) network
著者:: Zainudin, Muhammad Noorazlan Shah
出版事項: (2009) -
Hybrid radial basis function network for classification problems
著者:: Shamsuddin, Siti Mariyam, 等
出版事項: (2009)