Rainfall Classification for Flood Prediction Using Meteorology Data of Kuching, Sarawak, Malaysia: Backpropagation vs Radial Basis Function Neural Network
Rainfall is often defined by stochastic process due to its random characteristics, i.e. space and time dependent and it is therefore, not easy to predict. In general, rainfall is a highly non-linear and complicated phenomenon. In order to acquire an accurate prediction, advanced computer modeling...
محفوظ في:
المؤلفون الرئيسيون: | Chai, Soo See, Wong, Wei Keat, Kok, Luong Goh |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
University of Queensland, Australia
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://ir.unimas.my/id/eprint/15861/1/Rainfall%20Classification%20for%20Flood%20Prediction%20%28abstract%29.pdf http://ir.unimas.my/id/eprint/15861/ http://www.ijesd.org/ |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Backpropagation vs. radial basis function neural model : Rainfall intensity classification for flood prediction using meteorology data
بواسطة: Chai, S.S., وآخرون
منشور في: (2016) -
Daily Rainfall Forecasting Using Meteorology Data with Long Short-Term Memory (LSTM) Network
بواسطة: Soo See, Chai, وآخرون
منشور في: (2022) -
Radial basis function neural network learning with modified backpropagation algorithm
بواسطة: Tukur, Usman Muhammad
منشور في: (2014) -
Comparative study of classification tissue in medical imaging using radial basis function (RBF) and backpropagation (BP) network
بواسطة: Zainudin, Muhammad Noorazlan Shah
منشور في: (2009) -
Hybrid radial basis function network for classification problems
بواسطة: Shamsuddin, Siti Mariyam, وآخرون
منشور في: (2009)