Molecular characterization of the its2 transcript and saxitoxin biosynthetic genes in two toxic dinoflagellates, alexandrium (dinophyceae) from Malaysia

The genus Alexandrium is a widely distributed dinoflagellate, and has the ability to produce potent neurotoxins, saxitoxin (STX). Taxonomy of this genus still remains uncertain and species identification is yet confusing. In this study, the second internal transcribed spacer (ITS2) transcript was us...

Full description

Saved in:
Bibliographic Details
Main Author: Hii, Kieng Soon
Format: Thesis
Language:English
Published: Universiti Malaysia Sarawak (UNIMAS) 2012
Subjects:
Online Access:http://ir.unimas.my/id/eprint/14224/1/Hii%20Kieng.pdf
http://ir.unimas.my/id/eprint/14224/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.unimas.ir.14224
record_format eprints
spelling my.unimas.ir.142242023-05-03T06:52:51Z http://ir.unimas.my/id/eprint/14224/ Molecular characterization of the its2 transcript and saxitoxin biosynthetic genes in two toxic dinoflagellates, alexandrium (dinophyceae) from Malaysia Hii, Kieng Soon Q Science (General) The genus Alexandrium is a widely distributed dinoflagellate, and has the ability to produce potent neurotoxins, saxitoxin (STX). Taxonomy of this genus still remains uncertain and species identification is yet confusing. In this study, the second internal transcribed spacer (ITS2) transcript was used to infer the phylogenetic relationships of Alexandrium species distributed worldwide. A total of 33 ITS2 transcript of Alexandrium spp. were successfully modeled in silico, with one each from Pyrodinium bahamense var. compressum, Coolia malayensis and C. monotis as outgroup) The models showed conserved four universal helices of ITS2 transcript. The phylogenetic inference based on sequence-structural information revealed nearly similar phylogenetic framework as inferred in the Large Subunit (LSU) rDNA phylogeny. However, the results showed possible phylogeographic break in the A. minutum Glade where the Asia Pacific and New Zealand A. minutum formed a distant group from the Australian and European group. Genetics of the STX biosynthesis pathway has recently become one of the major focuses in Paralytic Shellfish Poisoning (PSP) toxin-related studies after the discovery of STX biosynethetic genes in toxic cyanobacteria, and later in the toxic dinoflagellates. In the present study, two domains of a saxitoxin biosynthetic gene sxtA, S-adenosyl-L-methionine (SAM)-dependent methyltransferase coding gene (sxtA1) and the class 11 aminotransferase coding gene (sxtA4) were characterized from a toxic A. tamiyavanichii from Samariang, Sarawak. A saxitoxin biosynthetic gene encoding the O-carbamoyltransferase (sxtl) was also characterized in the toxic A. minutum from Tumpat, Kelantan. The partial coding sequences of saxitoxin starting gene, sxtAl and sxtA4 of A. tamiyavanichii were 432 bp and 639 bp, respectively. While the deduced amino acid sequences of sxtAl and sxtA4 were 144 and 213 amino acid residues, respectively. Sequences comparison revealed high similarity and identity to other PSP toxins-producing dinoflagellates (82-98% and 84-99%). In contrast, protein phylogenetic analyses revealed close relationship of both A. tamiyavanichii sxtA1 and sxtA4 to others PSP toxins-producing dinoflagellates, with sxtA of PSP toxins-producing cyanobacteria and putative toxin-related genes forming the sister Glade. On the other hand, the coding sequence of O-carbamoyltransferase (sxtl) of A. minutum was 1,920 bp long, and the deduced amino acid sequence revealed a polypeptide of 639 amino acids. Structural sequence alignment revealed high similarity and identity (50-52% and 87- 89%) to sxd from the toxic cyanobacteria. Sequence comparison of A. minutum sxtl revealed highly conserved pattern, with five phosphorylation motifs, two catalytic regions, and a zinc finger detected. Even though homology between A. minutum sxtl and other cyanobacterial sxtl was observed, protein phylogenetic analysis inferred a distant relationship with the cyanobacterial Sxtl, suggesting a paralog of SxtI in dinoflagellates. Universiti Malaysia Sarawak (UNIMAS) 2012 Thesis NonPeerReviewed text en http://ir.unimas.my/id/eprint/14224/1/Hii%20Kieng.pdf Hii, Kieng Soon (2012) Molecular characterization of the its2 transcript and saxitoxin biosynthetic genes in two toxic dinoflagellates, alexandrium (dinophyceae) from Malaysia. Masters thesis, Universiti Malaysia Sarawak.
institution Universiti Malaysia Sarawak
building Centre for Academic Information Services (CAIS)
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Sarawak
content_source UNIMAS Institutional Repository
url_provider http://ir.unimas.my/
language English
topic Q Science (General)
spellingShingle Q Science (General)
Hii, Kieng Soon
Molecular characterization of the its2 transcript and saxitoxin biosynthetic genes in two toxic dinoflagellates, alexandrium (dinophyceae) from Malaysia
description The genus Alexandrium is a widely distributed dinoflagellate, and has the ability to produce potent neurotoxins, saxitoxin (STX). Taxonomy of this genus still remains uncertain and species identification is yet confusing. In this study, the second internal transcribed spacer (ITS2) transcript was used to infer the phylogenetic relationships of Alexandrium species distributed worldwide. A total of 33 ITS2 transcript of Alexandrium spp. were successfully modeled in silico, with one each from Pyrodinium bahamense var. compressum, Coolia malayensis and C. monotis as outgroup) The models showed conserved four universal helices of ITS2 transcript. The phylogenetic inference based on sequence-structural information revealed nearly similar phylogenetic framework as inferred in the Large Subunit (LSU) rDNA phylogeny. However, the results showed possible phylogeographic break in the A. minutum Glade where the Asia Pacific and New Zealand A. minutum formed a distant group from the Australian and European group. Genetics of the STX biosynthesis pathway has recently become one of the major focuses in Paralytic Shellfish Poisoning (PSP) toxin-related studies after the discovery of STX biosynethetic genes in toxic cyanobacteria, and later in the toxic dinoflagellates. In the present study, two domains of a saxitoxin biosynthetic gene sxtA, S-adenosyl-L-methionine (SAM)-dependent methyltransferase coding gene (sxtA1) and the class 11 aminotransferase coding gene (sxtA4) were characterized from a toxic A. tamiyavanichii from Samariang, Sarawak. A saxitoxin biosynthetic gene encoding the O-carbamoyltransferase (sxtl) was also characterized in the toxic A. minutum from Tumpat, Kelantan. The partial coding sequences of saxitoxin starting gene, sxtAl and sxtA4 of A. tamiyavanichii were 432 bp and 639 bp, respectively. While the deduced amino acid sequences of sxtAl and sxtA4 were 144 and 213 amino acid residues, respectively. Sequences comparison revealed high similarity and identity to other PSP toxins-producing dinoflagellates (82-98% and 84-99%). In contrast, protein phylogenetic analyses revealed close relationship of both A. tamiyavanichii sxtA1 and sxtA4 to others PSP toxins-producing dinoflagellates, with sxtA of PSP toxins-producing cyanobacteria and putative toxin-related genes forming the sister Glade. On the other hand, the coding sequence of O-carbamoyltransferase (sxtl) of A. minutum was 1,920 bp long, and the deduced amino acid sequence revealed a polypeptide of 639 amino acids. Structural sequence alignment revealed high similarity and identity (50-52% and 87- 89%) to sxd from the toxic cyanobacteria. Sequence comparison of A. minutum sxtl revealed highly conserved pattern, with five phosphorylation motifs, two catalytic regions, and a zinc finger detected. Even though homology between A. minutum sxtl and other cyanobacterial sxtl was observed, protein phylogenetic analysis inferred a distant relationship with the cyanobacterial Sxtl, suggesting a paralog of SxtI in dinoflagellates.
format Thesis
author Hii, Kieng Soon
author_facet Hii, Kieng Soon
author_sort Hii, Kieng Soon
title Molecular characterization of the its2 transcript and saxitoxin biosynthetic genes in two toxic dinoflagellates, alexandrium (dinophyceae) from Malaysia
title_short Molecular characterization of the its2 transcript and saxitoxin biosynthetic genes in two toxic dinoflagellates, alexandrium (dinophyceae) from Malaysia
title_full Molecular characterization of the its2 transcript and saxitoxin biosynthetic genes in two toxic dinoflagellates, alexandrium (dinophyceae) from Malaysia
title_fullStr Molecular characterization of the its2 transcript and saxitoxin biosynthetic genes in two toxic dinoflagellates, alexandrium (dinophyceae) from Malaysia
title_full_unstemmed Molecular characterization of the its2 transcript and saxitoxin biosynthetic genes in two toxic dinoflagellates, alexandrium (dinophyceae) from Malaysia
title_sort molecular characterization of the its2 transcript and saxitoxin biosynthetic genes in two toxic dinoflagellates, alexandrium (dinophyceae) from malaysia
publisher Universiti Malaysia Sarawak (UNIMAS)
publishDate 2012
url http://ir.unimas.my/id/eprint/14224/1/Hii%20Kieng.pdf
http://ir.unimas.my/id/eprint/14224/
_version_ 1765301164586303488
score 13.211869