Similarity reasoning-driven evolutionary fuzzy system for monotonic-preserving models
Fuzzy Inference System (FIS) is a popular computing paradigm which has been identified as a solution for various application domains, e.g. control, assessment, decision making, and approximation. However, it suffers from two major shortcomings, i.e., the "curse of dimensionality" and the &...
保存先:
第一著者: | Jee, Tze Ling |
---|---|
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
Universiti Malaysia Sarawak, (UNIMAS)
2013
|
主題: | |
オンライン・アクセス: | http://ir.unimas.my/id/eprint/13966/1/Jee.pdf http://ir.unimas.my/id/eprint/13966/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A non-linear programming-based similarity reasoning scheme for modelling of monotonicity-preserving multi-input fuzzy inference systems
著者:: Kai, Meng Tay, 等
出版事項: (2012) -
Building Monotonicity-Preserving Fuzzy Inference Models with Optimization-Based Similarity Reasoning and a Monotonicity Index
著者:: Kai, M.T, 等
出版事項: (2012) -
A New Framework With Similarity Reasoning and
Monotone Fuzzy Rule Relabeling for Fuzzy Inference
Systems
著者:: Tay, Kai Meng, 等
出版事項: (2013) -
An Evolutionary-Based Similarity Reasoning Scheme for Monotonic Multi-Input Fuzzy Inference Systems
著者:: Kai, M.T, 等
出版事項: (2011) -
A new fuzzy criterion-referenced assessment with a fuzzy rule selection technique and a monotonicity-preserving similarity reasoning scheme
著者:: Jee, T.L, 等
出版事項: (2013)