Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines
The ensemble learning paradigm has proved to be relevant to solving most challenging industrial problems. Despite its successful application especially in the Bioinformatics, the petroleum industry has not benefited enough from the promises of this machine learning technology. The petroleum industry...
保存先:
主要な著者: | Fatai Adesina, Anifowose, Jane, Labadin, Abdulazeez, Abdulraheem |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Elsevier Ltd.
2015
|
主題: | |
オンライン・アクセス: | http://ir.unimas.my/id/eprint/12744/1/Improving-the-prediction-of-petroleum%20%28abstract%29.pdf http://ir.unimas.my/id/eprint/12744/ https://www.scopus.com/record/display.uri?eid=2-s2.0-84912062615&origin=inward&txGid=0 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A Hybrid of Functional Networks and Support Vector Machine Models for the Prediction of Petroleum Reservoir Properties
著者:: Fatai Adesina, Anifowose, 等
出版事項: (2011) -
Predicting Petroleum Reservoir Properties from Downhole
Sensor Data using an Ensemble Model of Neural Networks
著者:: Fatai Adesina, Anifowose, 等
出版事項: (2013) -
Ensemble model of non-linear feature selection-based Extreme Learning Machine for improved natural gas reservoir characterization
著者:: Fatai Adesina, Anifowose, 等
出版事項: (2015) -
Ensemble learning model for petroleum reservoir characterization: A case of feed-forward back-propagation neural networks
著者:: Fatai, Anifowose, 等
出版事項: (2013) -
A least-square-driven functional networks type-2 fuzzy logic
hybrid model for efficient petroleum reservoir properties
prediction
著者:: Fatai Adesina, Anifowose, 等
出版事項: (2013)