Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines
The ensemble learning paradigm has proved to be relevant to solving most challenging industrial problems. Despite its successful application especially in the Bioinformatics, the petroleum industry has not benefited enough from the promises of this machine learning technology. The petroleum industry...
Saved in:
Main Authors: | Fatai Adesina, Anifowose, Jane, Labadin, Abdulazeez, Abdulraheem |
---|---|
格式: | Article |
语言: | English |
出版: |
Elsevier Ltd.
2015
|
主题: | |
在线阅读: | http://ir.unimas.my/id/eprint/12744/1/Improving-the-prediction-of-petroleum%20%28abstract%29.pdf http://ir.unimas.my/id/eprint/12744/ https://www.scopus.com/record/display.uri?eid=2-s2.0-84912062615&origin=inward&txGid=0 |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
A Hybrid of Functional Networks and Support Vector Machine Models for the Prediction of Petroleum Reservoir Properties
由: Fatai Adesina, Anifowose, et al.
出版: (2011) -
Predicting Petroleum Reservoir Properties from Downhole
Sensor Data using an Ensemble Model of Neural Networks
由: Fatai Adesina, Anifowose, et al.
出版: (2013) -
Ensemble model of non-linear feature selection-based Extreme Learning Machine for improved natural gas reservoir characterization
由: Fatai Adesina, Anifowose, et al.
出版: (2015) -
Ensemble learning model for petroleum reservoir characterization: A case of feed-forward back-propagation neural networks
由: Fatai, Anifowose, et al.
出版: (2013) -
A least-square-driven functional networks type-2 fuzzy logic
hybrid model for efficient petroleum reservoir properties
prediction
由: Fatai Adesina, Anifowose, et al.
出版: (2013)