Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines
The ensemble learning paradigm has proved to be relevant to solving most challenging industrial problems. Despite its successful application especially in the Bioinformatics, the petroleum industry has not benefited enough from the promises of this machine learning technology. The petroleum industry...
محفوظ في:
المؤلفون الرئيسيون: | Fatai Adesina, Anifowose, Jane, Labadin, Abdulazeez, Abdulraheem |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Elsevier Ltd.
2015
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://ir.unimas.my/id/eprint/12744/1/Improving-the-prediction-of-petroleum%20%28abstract%29.pdf http://ir.unimas.my/id/eprint/12744/ https://www.scopus.com/record/display.uri?eid=2-s2.0-84912062615&origin=inward&txGid=0 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A Hybrid of Functional Networks and Support Vector Machine Models for the Prediction of Petroleum Reservoir Properties
بواسطة: Fatai Adesina, Anifowose, وآخرون
منشور في: (2011) -
Predicting Petroleum Reservoir Properties from Downhole
Sensor Data using an Ensemble Model of Neural Networks
بواسطة: Fatai Adesina, Anifowose, وآخرون
منشور في: (2013) -
Ensemble model of non-linear feature selection-based Extreme Learning Machine for improved natural gas reservoir characterization
بواسطة: Fatai Adesina, Anifowose, وآخرون
منشور في: (2015) -
Ensemble learning model for petroleum reservoir characterization: A case of feed-forward back-propagation neural networks
بواسطة: Fatai, Anifowose, وآخرون
منشور في: (2013) -
A least-square-driven functional networks type-2 fuzzy logic
hybrid model for efficient petroleum reservoir properties
prediction
بواسطة: Fatai Adesina, Anifowose, وآخرون
منشور في: (2013)