AUTOMATED CERVICAL CELL NUCLEI SEGMENTATION BASED ON MULTILAYER UNSUPERVISED CLUSTERING ALGORITHM AND MORPHOLOGICAL APPROACH

Cervical cancer, a leading cause of female mortality globally, results from abnormal cell growth in the cervix, making early detection crucial. This study suggests an automated segmentation approach that is more accurate and faster than traditional methods, which face challenges such as contrast p...

詳細記述

保存先:
書誌詳細
主要な著者: Khalis Danial Nukman, Khiruddin, Wan Azani, Mustafa, Khairur Rijal, Jamaludin, Khairul Shakir, Ab Rahman, Hiam, Alquran, Syahrul Nizam, Junaini
フォーマット: 論文
言語:English
出版事項: HOEHERE BUNDESLEHRANSTALT UND BUNDESAMT FUER WEIN- UND OBSTBAU 2025
主題:
オンライン・アクセス:http://ir.unimas.my/id/eprint/47661/1/AUTOMATED%20CERVICAL.pdf
http://ir.unimas.my/id/eprint/47661/
https://www.researchgate.net/publication/388959013_AUTOMATED_CERVICAL_CELL_NUCLEI_SEGMENTATION_BASED_ON_MULTILAYER_UNSUPERVISED_CLUSTERING_ALGORITHM_AND_MORPHOLOGICAL_APPROACH
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!