An explainable machine learning model for encompassing the mechanical strength of polymer-modified concrete
Polymer-modifed concrete (PMC) is an advanced building material with more excellent durability, tensile strength, adhesion, and lesser susceptibility to chemical degradation. Recent developments in machine learning (ML) have shown that predic�tion of compressive strength (CS) of PMC key input factor...
保存先:
主要な著者: | , , , |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Springer Nature Switzerland AG
2024
|
主題: | |
オンライン・アクセス: | http://ir.unimas.my/id/eprint/46734/2/An%20explainable%20machine%20learning%20model%20for%20encompassing.pdf http://ir.unimas.my/id/eprint/46734/ https://link.springer.com/article/10.1007/s42107-024-01230-6?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=nonoa_20241128&utm_content=10.1007%2Fs42107-024-01230-6 https://doi.org/10.1007/s42107-024-01230-6 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
インターネット
http://ir.unimas.my/id/eprint/46734/2/An%20explainable%20machine%20learning%20model%20for%20encompassing.pdfhttp://ir.unimas.my/id/eprint/46734/
https://link.springer.com/article/10.1007/s42107-024-01230-6?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=nonoa_20241128&utm_content=10.1007%2Fs42107-024-01230-6
https://doi.org/10.1007/s42107-024-01230-6