Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network
Link to publisher's homepage at http://ieeexplore.ieee.org/
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Working Paper |
Language: | English |
Published: |
IEEE Conference Publications
2014
|
Subjects: | |
Online Access: | http://dspace.unimap.edu.my:80/dspace/handle/123456789/33703 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.unimap-33703 |
---|---|
record_format |
dspace |
spelling |
my.unimap-337032017-11-29T05:04:03Z Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network Paulraj, Murugesa Pandiyan, Prof. Dr. Sazali, Yaacob, Prof. Dr. Hazry, Desa, Assoc. Prof. Dr. Wan Mohd Ridzuan, Wan Ab Majid paul@unimap.edu.my. s.yaacob@unimap.edu.my hazry@unimap.edu.my Sign language recognition Head and hand gestures Discrete Cosine Transform (DCT) Neural network Link to publisher's homepage at http://ieeexplore.ieee.org/ This paper presents simple methods for translating Kod Tangan Bahasa Melayu (KTBM) into voice signal based on subject head and two hand gestures. Different gesture signs made by different subjects are captured using a USB web camera in RGB video stream format with a screen bit depth of 24 bits and a resolution of 320 X 240 pixels. The recorded video of the sign language is divided into number of image frames. Using a simple segmentation technique, the frame image is segmented into three region namely, head region, left hand region and right hand region. After performing the image segmentation, the image frames are converted into binary image format. A simple feature extraction method is then applied and the variations of the features in the subsequent frame are modeled using Discrete Cosine Transform (DCT). The features extracted are associated to the equivalent voice sound and a simple neural network model trained by error prob method is developed. An audio system is used to play the equivalent voice signal from the recognized sign language. Experimental results demonstrate that the recognition rate of the proposed neural network models is about 81.07%. 2014-04-15T04:02:40Z 2014-04-15T04:02:40Z 2009 Working Paper 5th International Colloquium on Signal Processing & Its Applications, 2009, pages 19-22 978-1-4244-4151-8 http://dspace.unimap.edu.my:80/dspace/handle/123456789/33703 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5069179&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5069179 http://dx.doi.org/10.1109/CSPA.2009.5069179 en IEEE Conference Publications |
institution |
Universiti Malaysia Perlis |
building |
UniMAP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Perlis |
content_source |
UniMAP Library Digital Repository |
url_provider |
http://dspace.unimap.edu.my/ |
language |
English |
topic |
Sign language recognition Head and hand gestures Discrete Cosine Transform (DCT) Neural network |
spellingShingle |
Sign language recognition Head and hand gestures Discrete Cosine Transform (DCT) Neural network Paulraj, Murugesa Pandiyan, Prof. Dr. Sazali, Yaacob, Prof. Dr. Hazry, Desa, Assoc. Prof. Dr. Wan Mohd Ridzuan, Wan Ab Majid Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network |
description |
Link to publisher's homepage at http://ieeexplore.ieee.org/ |
author2 |
paul@unimap.edu.my. |
author_facet |
paul@unimap.edu.my. Paulraj, Murugesa Pandiyan, Prof. Dr. Sazali, Yaacob, Prof. Dr. Hazry, Desa, Assoc. Prof. Dr. Wan Mohd Ridzuan, Wan Ab Majid |
format |
Working Paper |
author |
Paulraj, Murugesa Pandiyan, Prof. Dr. Sazali, Yaacob, Prof. Dr. Hazry, Desa, Assoc. Prof. Dr. Wan Mohd Ridzuan, Wan Ab Majid |
author_sort |
Paulraj, Murugesa Pandiyan, Prof. Dr. |
title |
Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network |
title_short |
Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network |
title_full |
Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network |
title_fullStr |
Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network |
title_full_unstemmed |
Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network |
title_sort |
gesture recognition system for kod tangan bahasa melayu (ktbm) using neural network |
publisher |
IEEE Conference Publications |
publishDate |
2014 |
url |
http://dspace.unimap.edu.my:80/dspace/handle/123456789/33703 |
_version_ |
1643802749799759872 |
score |
13.226497 |