The Generalized Classes of Linear Symmetric Subdivision Schemes Free from Gibbs Oscillations and Artifacts in the Fitting of Data

This paper presents the advanced classes of linear symmetric subdivision schemes for the fitting of data and the creation of geometric shapes. These schemes are derived from the Bspline and Lagrange’s blending functions. The important characteristics of the derived schemes, including continuity, sup...

Full description

Saved in:
Bibliographic Details
Main Authors: Samsul Ariffin Abdul Karim 1,2,3,* ,, Rakib Mustafa, Humaira Mustanira Tariq, Ghulam Mustafa, Rabia Hameed, Sidra Razaq
Format: Article
Language:English
English
Published: MDPI AG 2023
Subjects:
Online Access:https://eprints.ums.edu.my/id/eprint/39222/1/ABSTRACT.pdf
https://eprints.ums.edu.my/id/eprint/39222/2/FULL%20TEXT.pdf
https://eprints.ums.edu.my/id/eprint/39222/
https://doi.org/10.3390/sym15091620
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.ums.eprints.39222
record_format eprints
spelling my.ums.eprints.392222024-07-19T08:08:30Z https://eprints.ums.edu.my/id/eprint/39222/ The Generalized Classes of Linear Symmetric Subdivision Schemes Free from Gibbs Oscillations and Artifacts in the Fitting of Data Samsul Ariffin Abdul Karim 1,2,3,* , Rakib Mustafa Humaira Mustanira Tariq Ghulam Mustafa Rabia Hameed Sidra Razaq QA76.75-76.765 Computer software This paper presents the advanced classes of linear symmetric subdivision schemes for the fitting of data and the creation of geometric shapes. These schemes are derived from the Bspline and Lagrange’s blending functions. The important characteristics of the derived schemes, including continuity, support, and the impact of parameters on the magnitude of the artifact and Gibbs oscillations are discussed. Schemes additionally generalize various subdivision schemes. Linear symmetric subdivision schemes can produce Gibbs oscillations when the initial data is taken from discontinuous functions. Additionally, these schemes may generate unwanted artifacts in the limit curve that do not exist in the original polygon. One solution is to use non-linear schemes, but this approach increases the computational complexity of the scheme. An alternative approach is proposed that involves modifying the linear symmetric schemes by introducing parameters into the linear rules. The suitable values of these parameters reduce or eliminate Gibbs oscillations and artifacts while still using linear symmetric schemes. Our approach provides a balance between reducing or eliminating Gibbs oscillations and artifacts while maintaining computational efficiency. In the second half, the piecewise parametric polynomial curves by using the blending polynomials used in the symmetric schemes are also presented. The majority of the properties of uniform quadratic and cubic B-splines with G² geometric continuities are inherited by these polynomial curves. These curves can also be used for local interpolation of the control points with G² continuity. Furthermore, by adjusting the value of the shape parameter, uniform cubic and quadratic B-spline curves can also be produced. These polynomial curves also satisfy the shape preserving properties of initial data. MDPI AG 2023 Article NonPeerReviewed text en https://eprints.ums.edu.my/id/eprint/39222/1/ABSTRACT.pdf text en https://eprints.ums.edu.my/id/eprint/39222/2/FULL%20TEXT.pdf Samsul Ariffin Abdul Karim 1,2,3,* , and Rakib Mustafa and Humaira Mustanira Tariq and Ghulam Mustafa and Rabia Hameed and Sidra Razaq (2023) The Generalized Classes of Linear Symmetric Subdivision Schemes Free from Gibbs Oscillations and Artifacts in the Fitting of Data. Symmetry, 15. pp. 1-28. https://doi.org/10.3390/sym15091620
institution Universiti Malaysia Sabah
building UMS Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Sabah
content_source UMS Institutional Repository
url_provider http://eprints.ums.edu.my/
language English
English
topic QA76.75-76.765 Computer software
spellingShingle QA76.75-76.765 Computer software
Samsul Ariffin Abdul Karim 1,2,3,* ,
Rakib Mustafa
Humaira Mustanira Tariq
Ghulam Mustafa
Rabia Hameed
Sidra Razaq
The Generalized Classes of Linear Symmetric Subdivision Schemes Free from Gibbs Oscillations and Artifacts in the Fitting of Data
description This paper presents the advanced classes of linear symmetric subdivision schemes for the fitting of data and the creation of geometric shapes. These schemes are derived from the Bspline and Lagrange’s blending functions. The important characteristics of the derived schemes, including continuity, support, and the impact of parameters on the magnitude of the artifact and Gibbs oscillations are discussed. Schemes additionally generalize various subdivision schemes. Linear symmetric subdivision schemes can produce Gibbs oscillations when the initial data is taken from discontinuous functions. Additionally, these schemes may generate unwanted artifacts in the limit curve that do not exist in the original polygon. One solution is to use non-linear schemes, but this approach increases the computational complexity of the scheme. An alternative approach is proposed that involves modifying the linear symmetric schemes by introducing parameters into the linear rules. The suitable values of these parameters reduce or eliminate Gibbs oscillations and artifacts while still using linear symmetric schemes. Our approach provides a balance between reducing or eliminating Gibbs oscillations and artifacts while maintaining computational efficiency. In the second half, the piecewise parametric polynomial curves by using the blending polynomials used in the symmetric schemes are also presented. The majority of the properties of uniform quadratic and cubic B-splines with G² geometric continuities are inherited by these polynomial curves. These curves can also be used for local interpolation of the control points with G² continuity. Furthermore, by adjusting the value of the shape parameter, uniform cubic and quadratic B-spline curves can also be produced. These polynomial curves also satisfy the shape preserving properties of initial data.
format Article
author Samsul Ariffin Abdul Karim 1,2,3,* ,
Rakib Mustafa
Humaira Mustanira Tariq
Ghulam Mustafa
Rabia Hameed
Sidra Razaq
author_facet Samsul Ariffin Abdul Karim 1,2,3,* ,
Rakib Mustafa
Humaira Mustanira Tariq
Ghulam Mustafa
Rabia Hameed
Sidra Razaq
author_sort Samsul Ariffin Abdul Karim 1,2,3,* ,
title The Generalized Classes of Linear Symmetric Subdivision Schemes Free from Gibbs Oscillations and Artifacts in the Fitting of Data
title_short The Generalized Classes of Linear Symmetric Subdivision Schemes Free from Gibbs Oscillations and Artifacts in the Fitting of Data
title_full The Generalized Classes of Linear Symmetric Subdivision Schemes Free from Gibbs Oscillations and Artifacts in the Fitting of Data
title_fullStr The Generalized Classes of Linear Symmetric Subdivision Schemes Free from Gibbs Oscillations and Artifacts in the Fitting of Data
title_full_unstemmed The Generalized Classes of Linear Symmetric Subdivision Schemes Free from Gibbs Oscillations and Artifacts in the Fitting of Data
title_sort generalized classes of linear symmetric subdivision schemes free from gibbs oscillations and artifacts in the fitting of data
publisher MDPI AG
publishDate 2023
url https://eprints.ums.edu.my/id/eprint/39222/1/ABSTRACT.pdf
https://eprints.ums.edu.my/id/eprint/39222/2/FULL%20TEXT.pdf
https://eprints.ums.edu.my/id/eprint/39222/
https://doi.org/10.3390/sym15091620
_version_ 1805887934931402752
score 13.211869