Optimization of an Innovative Hydrothermal Processing on Prebiotic Properties of Eucheuma denticulatum, a Tropical Red Seaweed
Seaweed is a sustainable source of marine oligosaccharides that potentially could be used as a prebiotic ingredient for functional food development. The study aims to optimize the oligosaccharide preparation through thermal hydrolysis of an under-utilized red seaweed, Eucheuma denticulatum. Response...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Molecular Diversity Preservation International (MDPI)
2023
|
Subjects: | |
Online Access: | https://eprints.ums.edu.my/id/eprint/35756/1/ABSTRACT.pdf https://eprints.ums.edu.my/id/eprint/35756/2/FULL%20TEXT.pdf https://eprints.ums.edu.my/id/eprint/35756/ https://doi.org/10.3390/app13031517 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.ums.eprints.35756 |
---|---|
record_format |
eprints |
spelling |
my.ums.eprints.357562023-06-30T01:36:23Z https://eprints.ums.edu.my/id/eprint/35756/ Optimization of an Innovative Hydrothermal Processing on Prebiotic Properties of Eucheuma denticulatum, a Tropical Red Seaweed Birdie Scott Padam Chee Kiong Siew Fook Yee Chye QR75-99.5 Bacteria SH388.7-391.5 Algae culture Seaweed is a sustainable source of marine oligosaccharides that potentially could be used as a prebiotic ingredient for functional food development. The study aims to optimize the oligosaccharide preparation through thermal hydrolysis of an under-utilized red seaweed, Eucheuma denticulatum. Response surface methodology (RSM) applying Box–Behnken design (BBD) was used on three parameters including temperature (105–135 ◦C), hydrolysis time (15–35 min) and sulfuric acid concentration (0.05–0.2 M). Optimized fractions with good prebiotic activity were characterized using high-performance size-exclusion chromatography (HP-SEC) and Fourier transform infrared spectroscopy (FT-IR). Eucheuma denticulatum oligosaccharides fraction 1 (ED-F1) was shown to promote the growth of beneficial gut microbiota including Lactobacillus plantarum, L. casei, L. acidophilus, Bifidobacterium animalis and B. longum with the highest prebiotic activity score of 1.64 ± 0.17. The optimization studies showed that hydrolysis time was the most significant parameter for the oligosaccharides yield. Optimal hydrolysis conditions for ED-F1 were 120 ◦C, 21 min, 0.12 M H2SO4 with the highest yield achieved (11.15 g/100 g of dry weight). The molecular weight of ED-F1 was determined at 1025 Da while FT-IR analysis revealed the presence of sulfated oligosaccharides with similar characteristics of i-carrageenan. These findings signify the innovative method for the efficient production of seaweed derived prebiotic oligosaccharides, which could be a promising source of functional food ingredients for the development of health foods and beverages. Molecular Diversity Preservation International (MDPI) 2023 Article NonPeerReviewed text en https://eprints.ums.edu.my/id/eprint/35756/1/ABSTRACT.pdf text en https://eprints.ums.edu.my/id/eprint/35756/2/FULL%20TEXT.pdf Birdie Scott Padam and Chee Kiong Siew and Fook Yee Chye (2023) Optimization of an Innovative Hydrothermal Processing on Prebiotic Properties of Eucheuma denticulatum, a Tropical Red Seaweed. Applied Sciences, 13. pp. 1-15. https://doi.org/10.3390/app13031517 |
institution |
Universiti Malaysia Sabah |
building |
UMS Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Sabah |
content_source |
UMS Institutional Repository |
url_provider |
http://eprints.ums.edu.my/ |
language |
English English |
topic |
QR75-99.5 Bacteria SH388.7-391.5 Algae culture |
spellingShingle |
QR75-99.5 Bacteria SH388.7-391.5 Algae culture Birdie Scott Padam Chee Kiong Siew Fook Yee Chye Optimization of an Innovative Hydrothermal Processing on Prebiotic Properties of Eucheuma denticulatum, a Tropical Red Seaweed |
description |
Seaweed is a sustainable source of marine oligosaccharides that potentially could be used as a prebiotic ingredient for functional food development. The study aims to optimize the oligosaccharide preparation through thermal hydrolysis of an under-utilized red seaweed, Eucheuma denticulatum. Response surface methodology (RSM) applying Box–Behnken design (BBD) was used on three parameters including temperature (105–135 ◦C), hydrolysis time (15–35 min) and sulfuric acid concentration (0.05–0.2 M). Optimized fractions with good prebiotic activity were characterized using high-performance size-exclusion chromatography (HP-SEC) and Fourier transform infrared spectroscopy (FT-IR). Eucheuma denticulatum oligosaccharides fraction 1 (ED-F1) was shown to promote the growth of beneficial gut microbiota including Lactobacillus plantarum, L. casei, L. acidophilus, Bifidobacterium animalis and B. longum with the highest prebiotic activity score of 1.64 ± 0.17. The optimization studies showed that hydrolysis time was the most significant parameter for the oligosaccharides yield. Optimal hydrolysis conditions for ED-F1 were 120 ◦C, 21 min, 0.12 M H2SO4 with the highest yield achieved (11.15 g/100 g of dry weight). The molecular weight of ED-F1 was determined at 1025 Da while FT-IR analysis revealed the presence of sulfated oligosaccharides with similar characteristics of i-carrageenan. These findings signify the innovative method for the efficient production of seaweed derived prebiotic oligosaccharides, which could be a promising source of functional food ingredients for the development of health foods and beverages. |
format |
Article |
author |
Birdie Scott Padam Chee Kiong Siew Fook Yee Chye |
author_facet |
Birdie Scott Padam Chee Kiong Siew Fook Yee Chye |
author_sort |
Birdie Scott Padam |
title |
Optimization of an Innovative Hydrothermal Processing on Prebiotic Properties of Eucheuma denticulatum, a Tropical Red Seaweed |
title_short |
Optimization of an Innovative Hydrothermal Processing on Prebiotic Properties of Eucheuma denticulatum, a Tropical Red Seaweed |
title_full |
Optimization of an Innovative Hydrothermal Processing on Prebiotic Properties of Eucheuma denticulatum, a Tropical Red Seaweed |
title_fullStr |
Optimization of an Innovative Hydrothermal Processing on Prebiotic Properties of Eucheuma denticulatum, a Tropical Red Seaweed |
title_full_unstemmed |
Optimization of an Innovative Hydrothermal Processing on Prebiotic Properties of Eucheuma denticulatum, a Tropical Red Seaweed |
title_sort |
optimization of an innovative hydrothermal processing on prebiotic properties of eucheuma denticulatum, a tropical red seaweed |
publisher |
Molecular Diversity Preservation International (MDPI) |
publishDate |
2023 |
url |
https://eprints.ums.edu.my/id/eprint/35756/1/ABSTRACT.pdf https://eprints.ums.edu.my/id/eprint/35756/2/FULL%20TEXT.pdf https://eprints.ums.edu.my/id/eprint/35756/ https://doi.org/10.3390/app13031517 |
_version_ |
1770552500475133952 |
score |
13.211869 |